Automatic Repair of Java Code with Timing
Side-Channel Vulnerabilities

Rui Lima and Jodo F. Ferreira
INESC-ID and IST, University of Lisbon, Portugal

Abstract—Vulnerability detection and repair is a demanding
and expensive part of the software development process. As
such, there has been an effort to develop new and better ways
to automatically detect and repair vulnerabilities. DifFuzz is
a state-of-the-art tool for automatic detection of timing side-
channel vulnerabilities, a type of vulnerability that is particularly
difficult to detect and correct. Despite recent progress made with
tools such as DifFuzz, work on tools capable of automatically
repairing timing side-channel vulnerabilities is scarce. In this
paper, we propose DifFuzzAR, a new tool for automatic repair of
timing side-channel vulnerabilities in Java code. The tool works
in conjunction with DifFuzz and it is able to repair 56% of the
vulnerabilities identified in DifFuzz’s dataset. The results show
that the tool can indeed automatically correct timing side-channel
vulnerabilities, being more effective with those that are control-
flow based.

Index Terms—Source Code Refactoring, Timing Side-Channel
Vulnerabilities, Automatic Repair of Vulnerabilities, Code Repair,
Security, Java

I. INTRODUCTION

Software vulnerabilities are a serious threat to the security
of software systems and can have disastrous consequences.
For that reason, the detection of software vulnerabilities is an
important problem that has received a lot of attention from
the software security community. However, the detection of
vulnerabilities can be difficult since a vulnerable application
can pass all tests or even fulfil its correctness specification.
Different types of vulnerabilities have different difficulty levels
of detection. Arguably, one of the hardest types of vulnerabil-
ities to be detected are side-channel vulnerabilities.

A side-channel is any observable side effect of a computa-
tion which can manifest in several different ways: for example,
in the difference in computation time, in power consumption,
sound production, or electromagnetic radiation emitted [1], [2].
Most of the side-effects require that the attackers have physical
access to the system they are trying to attack, since they need
to gather information directly from the system (e.g. measuring
the power consumption). On the other hand, side-effects such
as the difference in computation time or in response size do not
require the attackers to be in direct contact with the systems
under attack. This enables the possibility of remote attacks,
thus exposing systems to a larger number of attackers.

Moreover, side-channel vulnerabilities based on measuring
differences in computation time, also known as timing side-
channel vulnerabilities, can occur at multiple program points:
for example, they can occur on a simple method to compare
strings, or on a large and complex parallel computation. There

Alexandra Mendes

INESC TEC and Universidade da Beira Interior, Portugal

are multiple real-world applications that were found to be
vulnerable to timing side-channel attacks. For instance, Nate
Lawson et al. discovered a timing side-channel vulnerability in
Google’s Keyczar Library [3]; another example is the timing
side-channel vulnerability discovered in Xbox 360 [4].

As timing side-channel vulnerabilities are difficult to detect,
there has been a substantial effort to develop tools capable of
automatically detecting these vulnerabilities [5]-[7]. Despite
this, once vulnerabilities are found, developers must correct
them manually, which in some cases can be difficult, time-
consuming and prone to errors. As such, we propose to
facilitate the correction of vulnerabilities by developing a
tool capable of automatically repairing timing side-channel
vulnerabilities. Even though the ideas presented in this paper
are general and can be applied to different programming
languages, we focus on Java, since according to GitHub [8],
Java is the second language with more contributors in public
and private repositories and is still the most used language for
enterprise applications [9], [10]. The tool developed, called
DifFuzzAR, is designed to work in conjunction with the state-
of-the-art detection tool DifFuzz [7]. We evaluated DifFuzzAR
using the same dataset that was used to evaluate DifFuzz:
although DifFuzzAR has some limitations, it repaired 56% of
the vulnerabilities identified in DifFuzz’s dataset. This shows
that DifFuzzAR has the potential to simplify substantially the
debugging process.

Structure of the paper: We present background and
related work in Section II. After presenting an overview of
the system in Section III, we describe the main components of
DifFuzzAR: in Section IV we present how vulnerable methods
are identified and in Section V we describe how vulnerabilities
are fixed. The evaluation of the tool is presented in Section VI.
We conclude the paper in Section VII, where we also present
current limitations and discuss future work.

II. BACKGROUND AND RELATED WORK
This section presents background and related work on tim-
ing side-channel vulnerabilities and automated repair methods.
A. Timing Side-Channel Vulnerabilities

A timing side-channel vulnerability happens when a secret'
can be learned based on the time a computation takes to
complete. To put it differently, an application is vulnerable to

LA secret is any value, not known by an attacker, be it a password, a secret
code, or any value that attackers attempt to learn.

timing side-channel attacks when the time it takes to complete
a computation depends on a given secret, e.g., a password. A
timing side-channel vulnerability can appear in multiple ways,
as detailed below.

1) Early-Exit Vulnerabilities: An early-exit timing side-
channel vulnerability happens when the method contains exit
points that are dependent on the value of a secret. An example
is when checking if an array has a certain length and exiting
immediately once it is established that it does not. If that array
is a secret, then the execution time of the method is dependent
on the value of the secret, in this case, on the size of the array.

2) Control-Flow Based Vulnerabilities: A control-flow
based timing side-channel vulnerability happens when there
is a significantly slow operation that happens only when a
certain condition is met. This means that an attacker can take
notice of the time a method takes to return and learn that the
slow operation is executed.

3) Mixed Vulnerabilities: Some methods might suffer from
both early-exit and control-flow based timing side-channel
vulnerabilities. When this happens, we say that the method
has a mixed timing side-channel vulnerability. To fix it, it is
necessary to correct the early-exit and the control-flow parts
of the vulnerability. This can be done in different ways. First,
they can be corrected simultaneously. Another option is to first
correct one of the types of vulnerability and then correct the
other type on the corrected version of the first type.

B. Detection of Timing Side-Channel Vulnerabilities

Automated detection of timing side-channel vulnerabili-
ties has received substantial attention in recent years. Timos
Antonopoulos et al. [5] developed a new way to prove the ab-
sence of timing side-channels, by using decomposition instead
of self-composition. Their approach divides the program’s
execution traces into smaller and less complex partitions.
Then each partition has their resilience to timing side-channels
attacks checked through a time complexity analysis. The
authors’ idea is that the resilience of each component proves
the resilience of the whole program. To ensure that any pair
of program traces with the same public input has a component
containing both traces, the construction of the partition is done
by splitting the program traces at secret-independent branches.
The authors’ approach follows the demand-driven partitioning
strategy that uses a regex-like notion that they call trails,
which identifies sets of execution traces, particularly those
influenced by tainted (or secret) data. The authors prove a non-
relational property about a trace, instead of proving a relational
property about every pair of execution traces. Their method is
implemented in a tool called Blazer.

Jia Chen et al. [6] presented the notion of e-bounded
non-interference, a variation of Goguen and Meseguer’s non-
interference principle [11]. The execution time of an appli-
cation can be affected by sources external to the application.
As such, a minimum difference in execution time should be
expected and must be accepted. This minimum change is
what the authors denote as €. To simplify, e-bounded non-
interference means that regardless of the secret, the execution

time of an application will not vary by more than €. To
verify the e-bounded non-interference property, the authors
present a new program logic called Quantitative Cartesian
Hoare Logic (QCHL), which is at the core of their technique.
With QCHL the authors can “[...] prove triples of the form
(¢) S (1), where S is a program fragment and ¢, 1 are first-
order formulas that relate the program’s resource usage (e.g.,
execution time) between an arbitrary pair of program runs”. The
authors implemented their technique in a tool called Themis
and showed that their tool can find previously unknown
vulnerabilities in widely used Java programs.

Shirin Nilizadeh et al. [7] present a new approach based on
dynamic analysis and introduce a new tool called DifFuzz that
uses differential fuzzing’. DifFuzz instruments a program to
record its coverage and resource consumption along the paths
that are executed. As such, the inputs must maximize the code
coverage. For that, they use the fuzz testing tool American
Fuzzy Lop (AFL) [12], which uses genetic algorithms and
mutates the inputs using byte-level coverage. Given that AFL
only supports programs written in C, C++, or Objective C,
and DifFuzz is written in Java, the authors used Kelinci [13]
to connect the two tools, since Kelinci provides AFL-style
instrumentation for Java programs. To use DifFuzz, one has
to create a Fuzzing Driver (or Driver File), that parses the
input provided by AFL and executes two copies of the code,
measuring the cost difference between the two. That cost
difference will be used to guide the AFL in the generation
of more input values so that the difference can be increased.
This process is repeated for a predetermined time or until
the user cancels the execution of the tool. DifFuzz was
evaluated with a dataset of widely-used Java applications and
it found previously unknown vulnerabilities (later confirmed
by the developers). It was also applied to complex examples
from the DARPA STAC [14] program. DifFuzz was able to
find the same vulnerabilities as other tools and also found
vulnerabilities on corrected versions of the benchmarks of
Themis and Blazer.

The authors of DifFuzz proposed improvements such as
adding statistical guarantees to the tool and adding automated
repair methods to eliminate the vulnerabilities discovered by
DifFuzz. Our work contributes to the latter.

C. Automated Repair Tools

Claire Le Goues et al. [15] presented a generic method for
automatic software repair called GenProg, which receives as
input the defected source code and a set of test cases. The set
of test cases must contain a set of passing positive test cases
and at least one failing negative test case. The negative test
case encodes the fault to be repaired and the set of positive
test cases encodes the functionalities that can not be lost
while repairing the bug. GenProg uses genetic programming
to search for a variant of the program that retains all required
functionality but does not have the fault in question.

2Fuzzing is an automated testing technique in which invalid, unexpected or
random data is provided as input to the program in test.

Jifeng Xuan et al. [16] presented Nopol, an approach
to automatically repair buggy conditional statements. This
approach takes as input a program and a set of test cases and
outputs a patch for the input program with a conditional ex-
pression. The set of test cases passed as input is similar to the
one expected by GenProg. However, unlike GenProg, which
follows a generic approach for automatic software repair,
Nopol was built to focus on buggy if conditions and missing
precondition bugs. Buggy if conditions occur when a bug is
the condition of an ‘if” statement. Missing precondition bugs
happen when there should be a condition before a statement,
such as detecting a null pointer or an invalid index to access
an array. Nopol uses Ochiai, a spectrum-based ranking metric
that is used to rank statements in a descending order based on
their suspiciousness score. The suspiciousness score indicates
the likelihood that a statement contains a fault.

D. Automated Repair of Timing Side-Channel Vulnerabilities

Meng Wu et al. [17] proposed a method based on program
analysis and transformation to eliminate timing side-channel
vulnerabilities. Their solution produces a transformed program
functionally equivalent to the original program but without
instruction and cache timing side-channels. They ensure that
the number of CPU cycles taken to execute any path is
independent of the secret data, and the cache behaviour of
memory accesses is independent of the secret data in terms
of hits and misses. Their method is implemented in LLVM
and uses static analysis to identify the set of variables whose
values depend on the secret inputs. To decide if those variables
lead to timing side-channel vulnerabilities, they check if the
variables affect unbalanced conditional jumps, for instruction
timing side-channel, or accesses to memory blocks across
multiple cache lines, for cache-related timing side-channel
vulnerabilities. After this analysis, to mitigate the leaks, code
transformation is performed to equalize the execution time.
The method is implemented in a tool called SC-Eliminator.

III. SYSTEM OVERVIEW

DifFuzzAR is designed to work in conjunction with Dif-
Fuzz. The tool needs to first identify the vulnerable method to
be repaired. For this, the tool assumes the existence of a Driver
file that can be used with DifFuzz. Once the vulnerable method
is identified using the Driver, the tool will attempt to repair
the method. In its current version, DifFuzzAR will attempt
to repair Early-Exit Timing Side-Channel vulnerabilities and
Control-Flow Based Timing Side-Channel vulnerabilities.

DifFuzzAR was designed to be as modular as possible.
This way, if someone wants to add functionality to repair
another type of vulnerability, they simply have to create a new
independent module with all the code capable of repairing it.
The one thing that is intrinsic to the tool is the analysis of
the Driver to identify the vulnerable method and the class it
belongs to. Once this identification is done, the tool searches
for that method and sends it to the module responsible for
correcting an early-exit timing side-channel vulnerability. That
module then creates a repaired version of the method, which

is then sent to the module responsible for correcting a control-
flow based timing side-channel vulnerability. That module then
creates another repaired version of the method and, given that
it is the final module, the tool outputs a new class with the
corrected method. An overview of the architecture of the tool
is shown in Figure 1.

IV. IDENTIFICATION OF VULNERABLE METHODS

The first task of DifFuzzAR is to uncover the vulnerable
method that is to be repaired. As mentioned above, the driver
used for DifFuzz is used to identify the method. This means
that the driver must be properly created so that the correct
method is retrieved. We assume that drivers are similar to
the drivers provided by DifFuzz, where each driver calls the
vulnerable method twice, each time immediately after a call to
the method Mem.clear()®. However, there are three groups
of variations that we consider:

Group 1. The simplest variation occurs when an object
is created between the invocation of Mem.clear()
and the invocation of the vulnerable method. This
normally happens when the vulnerable method is an
instance method and the object needed to invoke it
is created before the invocation.

Group 2. A second variation is when after the instruction
Mem.clear() a ‘try’ block appears. When this hap-
pens, the vulnerable method is considered to be the
first instruction of the ‘try’ block.

Group 3. The third variation occurs when after the in-
vocation of the instruction Mem.clear() an ‘if’
statement appears. When this happens, the invocation
of the vulnerable method is considered to be the
first statement of either the ‘then’ or ‘else’ block.
This normally happens when the driver used for the
safe and unsafe versions of an example are similar
and the difference is only in the value assigned to
a boolean variable. That variable will then be used
as a condition of an ‘if” to decide which method to
invoke (either the safe or unsafe version). To resolve
this case, it is necessary to record the variable and its
value. When the tool finds the ‘if’ statement where
its condition is the variable found, the value of the
variable is used to decide whether to look in the first
instruction of the ‘then’ block or the ‘else’ block.

The search for the method after the Mem.clear() instruc-
tion is done twice since in the driver the vulnerable method
will be invoked twice. The parameter that changes in both
invocations of the method is considered to be the secret. We
thus assume that the driver uses the same arguments for the
public parameters and different ones for the secret. For ex-
ample, consider the method invocations vulnMethod(a, b, c)
and vulnM ethod(a,d, ¢); here, the second parameter is con-
sidered by the tool as the secret, since it is the only parameter
that changes. In the identification of the vulnerable method,

3For concrete examples, see https:/github.com/sr-lab/DifFuzzAR/tree/
master/src/test/resources

https://github.com/sr-lab/DifFuzzAR/tree/master/src/test/resources
https://github.com/sr-lab/DifFuzzAR/tree/master/src/test/resources

Vulnerable
Project

Retrives vulnerable class
—

sends
vulnerable ——»|
method

Driver
Process

—

Searches for —
invocation of

Early-Exit
Correction

creates
P new class with —
corrected method

sends sends Corrected
Class

Control-Flow
Correction

method method

/vulnerable method

Driver

DifFuzzAR

Fig. 1. Overview of DifFuzzAR

the tool also finds the path to the class file where the method
definition is, even if that class is an inner class in some
package. The tool also validates its findings of the vulnerable
method by comparing the two instances and checking if name,
class, return type and the number of parameters are the same,
while at least one parameter is different. A basic overview of
this process can be seen in Algorithm 1.

Algorithm 1: Identification of the vulnerable method
using a DifFuzz driver
1: f < findDriverFile(driverPath)
instMeml, f* < findMemClear(f)
vulnOptl < recordNextInstruction(instMem1)
instMem?2 < findMemClear(f’)
vulnOpt2 < recordNextInstruction(instMem?2)
valid < comparelnstructions(vulnOpt1, vulnOpt2)

SARRANE Il

After implementing this strategy, the tool was tested with
the 58 drivers of all the examples provided with the DifFuzz
dataset [7]. The tool was capable of finding the correct
vulnerable method in all examples.

V. CORRECTION OF VULNERABILITIES

In the current version of DifFuzzAR, the correction of a
vulnerability is done in two separate phases: the correction
of an early-exit timing side-channel vulnerability followed by
the correction of a control-flow based timing side-channel
vulnerability. This way, there are two separate modules, each
responsible for the correction of one type of vulnerability. As
mentioned above, the addition of the correction of a new type
of side-channel vulnerability is as simple as writing the code
responsible for that correction and adding the module to the
tool, as well as its invocation.

From the previous identification step, the tool knows which
method was identified as vulnerable by DifFuzz. However, it
does not know the specific instruction or set of instructions that
cause the vulnerability. As such, the tool has to analyze the
code and produce a correction that consists in a modification
of the code to make its execution time as independent of the
secret as possible. Algorithm 2 shows a basic overview of the
correction process. If the vulnerable method has more than one
return statement, then the tool considers it to potentially have
an early-exit and so the tool starts by correcting that vulner-
ability. Afterwards, the tool executes the module responsible
for the correction of control-flow based timing side-channel
vulnerabilities.

The tool is implemented in Java and uses the open-source
library Spoon [18] for the refactoring process. Examples of
corrected vulnerabilities, which can be useful to understand in
more detail the descriptions presented in the next subsections,
are available in our GitHub repository.*

Algorithm 2: Overview of the repair process

1: if numberReturns >1 then
2: vulnMethod < repairEarlyExit(vulnMethod)
3: end if

4: vulnMethod < repairControlFlow(vulnMethod)

A. Correcting Early-Exit Timing Side-Channel Vulnerabilities

The correction of early-exit timing side-channel vulnera-
bilities consists in the elimination of all ‘return’ statements
except the last one. However, the result of the execution of
the method should be the same after the modification. For
that reason, every ‘return’ statement of the method will be
replaced with an assignment of the value being returned to a
variable. That variable will either be the variable returned in
the final return (if it returns a variable) or a new one created
with the return type of the method.

Algorithm 3 shows an overview of the correction process for
early-exit timing side-channel vulnerabilities. The tool starts
by obtaining the element returned in the final return of the
method. If this element is not a variable, the tool creates a new
variable of the same type as the return type of the method, and
initializes it with the element obtained, referred from now on
as the return variable. Then, the tool analyses every instruction
of the method in search for a return statement, which will be
replaced by an assignment to the return variable with the value
being returned. If that return statement happens after a ‘while’
block, then the instruction is added before the ‘while’ block. If
it is the last return statement, then the value being returned is
altered to be the return variable. If the return statement is inside
an ‘if” statement, then the condition of the ‘if’ statement is
saved to be used to protect the variables used in the condition.
If the instruction under analysis uses any variable saved to be
protected, then that statement will be inside the ‘then’ block of
a new ‘if’ statement, where the condition is the combination
of the negation of every condition that variable was part of.

In the end, a new version of the class that contains the
vulnerable method is created. This version is a copy of the

4Examples in GitHub repository: https://github.com/sr-lab/DifFuzzAR/tree/
master/src/test/resources

https://github.com/sr-lab/DifFuzzAR/tree/master/src/test/resources
https://github.com/sr-lab/DifFuzzAR/tree/master/src/test/resources

original version, except that it contains an extra method called
VulnerableMethodName$Modification. If the users want to use
the corrected version, they must replace the original method
with the corrected method.

Algorithm 3: Correction of Early-Exit Timing Side-
Channel Vulnerabilities

1: returnElem < obtainElemReturnedMethod(vulnMethod)

2: if lisVariable(returnElemen) then

3: returnElem < createVariable(returnElem)

4: end if

5: instruction <— getNextInstruction(vulnMethod)

6: while exist(instruction) do

7: if isReturn(instruction) then

8: if afterWhileBlock(instruction) then

9: addAssignmentBeforeWhile(instruction, returnElem)
10: else if lastReturn(instruction) then

11: changeReturnElem(instruction, returnElem)

12: else

13: replaceWithAssignment(instruction, returnElem)
14: if insidelf(instruction) then

15: condition <— saveCondition(instruction)

16: end if

17: end if

18: else if isVariableProtected(instruction) then

19: addIfToVariable(instruction)
20: end if

21: instruction <— getNextInstruction(vulnMethod)
22: end while
23: newMethod <— saveChanges()

This correction can create or exacerbate a control-flow based
timing side-channel vulnerability. For instance, if an early-exit
happens inside a loop, where the stopping condition depends
on a secret, then the effect of the existing control-flow based
timing side-channel vulnerability becomes more prominent,
i.e., the difference in execution time depending on the secret
is greater since it will have more instructions to execute.

B. Correcting Control-Flow Timing Side-Channel Vulnerabil-
ities

The correction of control-flow based timing side-channel
vulnerabilities involves 1) the modification of the stopping
condition of loops that depend on a secret to depend on
a public argument or 2) the replication of the block of
instructions of the ‘then’ block to the ‘else’ block, and vice-
versa, of an ‘if” statement where the condition depends on the
secret.

Algorithms 4 and 5 show an overview of the correction
process for this type of vulnerabilities. The pseudo-code is
divided into two parts to improve presentation. In this process,
the tool starts by creating a list of the secrets and a list of the
public arguments. The list of public arguments is final, while
the list of secrets is updated during the analysis of the method.
Every time a variable is assigned with a value dependent on a
secret, that variable is added to the list of secrets. The tool
also creates a map to connect the newly created variables
with the old variables being replaced. The tool then starts to
analyse each instruction, taking actions according to the type
of instruction and where the instruction happens.

If the instruction found is an assignment that needs to be
modified, then a new variable is created and it is added to the
map of replacements with the existing variable. The instruction
is also changed so that the variable being assigned to is the
newly created one. If the instruction found is a ‘for’ statement
and the stopping condition uses a secret, the tool will attempt
to change the condition to use a public argument instead of
the secret. This public argument must be of the same type
as the secret in the stopping condition. When the tool finds
a ‘for’ statement it will retrieve the body of the ‘for’ and
will analyse each instruction of that block. If the instruction
found is an ‘if” statement then the tool will retrieve the ‘then’
and ‘else’ blocks. If the condition uses a secret, then the
tool will try to modify the instructions of the ‘then’ block
and then of the ‘else’ block, producing two new blocks with
the modified versions of the instructions. Then, the modified
version of the ‘then’ block is added to the ‘else’ block and
the modified version of the ‘else’ block is added to the ‘then’
block. Otherwise, the tool will analyse each instruction of
both blocks without adding new instructions to either block.
If the instruction is a method invocation, the tool will retrieve
the target of that invocation. If the target is a secret, then
the tool will create a new variable to replace the target. If
the instruction is a local variable, the tool will retrieve the
assigned value. If that value uses a secret, then the variable
assigned to will be considered a secret. If the value being
assigned does not use any variable that is used in the condition
of the ‘if’ statement this instruction belongs to, then a new
variable to replace the variable assigned to is created. If the
instruction is a loop statement, then the tool will retrieve
its body and will analyse each instruction of the body. If
the instruction is an operator assignment, then the tool will
create a new variable to replace the one being assigned to.
If the instruction is a ‘try’ block, then the tool will retrieve
its body and will analyse its instructions. If the instruction is
a unary operator, the tool will retrieve the variable used. If
that variable was already replaced, then the tool will obtain
the variable created as a replacement and will replace the
variable in the unary operator with the variable created for
replacement. If the instruction is a ‘while’ statement, the tool
will replace the variables used in the stopping condition, either
by variables already created as replacements or with newly
created variables. Then the tool retrieves the body of the loop
and will analyse its instructions.

In the end, a new method is created with the control-flow
based timing side-channel vulnerability corrected.

C. Correcting Mixed Timing Side-Channel Vulnerabilities

Sometimes a method has both an early-exit and a control-
flow based timing side-channel vulnerability. If the method
has more than one return statement, the tool tries to repair
an early-exit timing side-channel vulnerability producing a
modified version of the method. Then, the tool tries to correct
the control-flow based timing side-channel vulnerability in the
modified version of the method, producing its final version.
This means that each module responsible for correcting a type

Algorithm 4: Correction of Control-Flow Based Tim-
ing Side-Channel Vulnerabilities - PART 1

Algorithm 5: Correction of Control-Flow Based Tim-
ing Side-Channel Vulnerabilities - PART 2

1: secrets < createListOfSecrets(vulnMethod)

2: public < createListOfPublic(vulnMethod)

3: replacements <— newMap()

4: instruction <— getNextInstruction(vulnMethod)

5: while exist(instruction) do

6: if isAssignment(instruction) then

7 if valueAssignedUsesSecret(instruction, secrets) then
8 variable <— getVariableAssignedTo(instruction)

9: secrets < addToSecrets(variable, secrets)

10: end if

11: if toModify(instruction) then

12: newVar < createNew Variable(instruction)

13: addToReplacements(replacements, instruction, new Var)

14: changeVariableAssignedTo(instruction, new Var)

15: end if

16: else if isForStatement(instruction) then

17: if conditionUsesSecret(instruction, secrets) then

18: changeConditionToUsePublic(instruction, secrets, public)

19: end if

20: traverseForBody (instruction)

21: else if isIfStatement(instruction) then

22: thenBlock <— getThenBlock(instruction)

23: elseBlock <— getElseBlock(instruction)

24: if conditionUsesSecret(instruction, secrets) then

25: modThen <— modifyInstructions(thenBlock)

26: modElse < modifylnstructions(elseBlock)

27: addToStartOfBlock(modThen, thenBlock)

28: addToStartOfBlock(modElse, elseBlock)

29: else

30: traverseBlock(thenBlock)

31: traverseBlock(elseBlock)

32: end if

33: else if isInvocation(instruction) then

34: target < getlnvocationTarget(instruction)

35: if isSecret(target, secrets) then

36: newTarget <— createNew Variable(target)

37: addToReplacements(replacements, instruction,
newTarget)

38: replaceTarget(instruction, newTarget)

39: end if

of timing side-channel vulnerability must return its modified
version of the method. Since both repair processes create new
variables in the method, and a method can not have two
variables with the same name, the naming of a variable is
global to the tool and it keeps a record of the names used.

VI. EVALUATION

In this section, we describe how the developed tool was
evaluated. The evaluation consists in ensuring that the refac-
tored code is semantically correct and that it has no timing
side-channel vulnerabilities detected by DifFuzz. This section
presents both types of evaluation, explaining how they are
done as well as why they are necessary.

This evaluation was performed in a remote server with a
32-processor Intel Xeon Silver 4110 at 2.10GHz with 64GB
of RAM running Debian Linux 10. DifFuzz was configured
to run for 2.5 hours. The results of the evaluation can be seen
in Table I.

40: else if isLocalVariable(instruction) then

41: assigned < getValueAssigned(instruction)

42: if usesSecret(assigned, secrets) then

43: variableAssigned <— getVariableAssignedTo(instruction)

44: secrets <— addtoSecrets(variableAssigned, secrets)

45: else if !isPartOfConditionOfParentIf(instruction, assigned)
then

46: newVar < createNew Variable(instruction)

47: addToReplacements(replacements, instruction, new Var)

43: changeVariableAssignedTo(instruction, new Var)

49: end if

50: else if isLoopStatement(instruction) then

51: traverseLoopBody (instruction)

52: else if isOperatorAssignment(instruction) then

53: new Var < createNew Variable(instruction)

54: addToReplacements(replacements, instruction, new Var)

55: changeVariableAssignedTo(instruction, new Var)

56: else if isTryBlock(instruction) then

57: traverse TryBody(instruction)

58: else if isUnaryOperator(instruction) then

59: var <— getVariable(instruction)

60: if isInReplacements(replacements, var) then

61: replacement < getReplacement(replacements, var)

62: changeVariableUsed(instruction, replacement)

63: end if

64: else if isWhileStatement(instruction) then

65: condition <— getStoppingCondition(instruction)

66: if usesReplacedVariable(condition, replacements) then

67: condition <— getReplacement(replacements, instruction)

68: else

69: condition < createNew Variable(condition)

70: addToReplacements(replacements, instruction, condition)

71: end if

72: updateStoppingCondition(instruction, condition)

73: traverseWhileBody(instruction)

74: end if

75: instruction <— getNextInstruction(vulnMethod)
76: end while
77: newMethod <— saveChanges()

A. Dataset Used

We started with the 32 examples distributed with DifFuzz.
One of the examples suffers from a size side-channel. In other
examples the vulnerability does not follow the template of
vulnerable methods considered in this project. Also, it was not
possible to understand why some examples are vulnerable. As
such, only 25 of those examples were used. Those examples
were categorized according to the type of vulnerability. Two
of the examples suffer from early-exit timing side-channel
vulnerability; eight of the examples contain a control-flow
based timing side-channel vulnerability; the remaining 15
examples have a mixed timing side-channel vulnerability.

B. Semantics Preservation

The modifications proposed can ‘break’ the code, in the
sense that for the same inputs, the output can be different
from that of the original version. As such, it is important that
after any modifications to a method, the method is tested again
to ensure that its functionality remains.

During the development of the tool, the application exam-
ples used by the authors of DifFuzz were used to ensure that
the tool was capable of correcting a vulnerability. However,
these examples do not include tests, so it was not possible to
ensure that the correction kept the functionality of the method.
Since creating manual tests is a time-consuming and error-
prone activity, we decided to use EvoSuite [19] to generate
tests automatically. The tests were created and first run on the
original, vulnerable, code. We only retained tests that pass.
Then, the vulnerable method was replaced with the method
created by the tool and the tests were executed again. If all
retained tests passed, then the solution created by the tool to
correct the timing side-channel vulnerability was considered
to be semantically correct.

Table I shows that 22 of the 25 attempted corrections (88%)
are semantically correct. Regarding the 3 corrections that are
not semantically correct, the first of them fails at compile time
because the correction introduced a new variable that was used
before being declared; the remaining two fail because, when
removing a return to deal with the early-exit vulnerability, an
exception ArraylndexOutOfBoundsException is introduced.

C. Vulnerability Correction

Once the tool repairs a vulnerable method and that repair is
shown to be semantically correct, it is necessary to verify if
the repair produced by the tool repairs the vulnerability. We
use DifFuzz to determine if the repaired version contains any
timing side-channel vulnerabilities.

Table I shows that out of 25 examples, the tool successfully
corrected 14 of them, a success rate of 56%. Not all cor-
rected versions produced by the tool are semantically correct,
meaning that the code lost some of the functionality after the
repair. When considering only semantically correct examples,
the total of examples is 22, which makes a success rate of
63,6%.

VII. CONCLUSIONS

This paper presents a tool for automatic repair of timing
side-channel vulnerabilities in Java code that works in con-
junction with DifFuzz [7]. Patterns that lead to timing side-
channel vulnerabilities were identified and algorithms capable
of correcting those potential vulnerabilities were proposed
and implemented. The tool developed was evaluated using
the same dataset that was used to evaluate DifFuzz [7], a
dataset that contains examples of applications with timing
side-channel vulnerabilities. The results obtained show that
88% of the attempted corrections are semantically correct
(i.e. the original behavior is preserved) and 56% of the
corrections eliminate the existing timing side-channel vul-
nerabilities. Even though there is space for improvement,
we believe that DifFuzzAR can be used as a starting point
for the development of new and improved tools capable of
correcting timing side-channel vulnerabilities and other related
vulnerabilities. The tool is open-source and is available at:
https://github.com/sr-lab/DifFuzzAR

A. System Limitations

Although DifFuzzAR was built in an attempt to correct
timing side-channel vulnerabilities regardless of how they
present themselves, it is still possible that sometimes the repair
created by the tool, not only does not repair the vulnerabilities,
but also breaks some of the functionality of the method.
As such, it is important to do a manual analysis of the
repaired method after the execution of the tool, not only to
check if no functionality is broken but also to beautify the
changes (e.g. improve the names of the variables). Besides
that, it is important that after the execution of the tool, the
produced code is analysed again with DifFuzz to see if the
tool eliminated the vulnerability.

The tool assumes that the method referenced in the Driver
is vulnerable and corrects it. As such, if the Driver is not
properly written or the method referenced is not the vulnerable
one, but one that calls the truly vulnerable method, then the
tool will not be able to repair it. DifFuzzAR can automatically
repair the patterns identified and described in this paper. For
vulnerabilities that follow other types of patterns, the tool
needs to be extended. It is thus necessary to continuously
improve the tool to be able to correct different code patterns
that contain a vulnerability, or different instructions that cause
the vulnerability. If the tool is executed on the correction of a
control-flow based timing side-channel vulnerability, it will al-
ways try to repair the vulnerability again, which means it might
break the original correction. In the results presented in this
paper, the corrected versions of some examples are presented
as having no timing side-channel vulnerability. However, there
is always the possibility that they might have a vulnerability
that remained unnoticed. Despite this, all the work developed
is open to others on GitHub.

B. Future work

There is still plenty of work that can be done to improve
DifFuzzAR. An important direction is to add the ability to
repair more examples of timing side-channel vulnerabilities
(including patterns not considered). DifFuzzAR is designed
to be used in conjunction with DifFuzz. This means that the
user must create a Driver following the rules described in
Section IV. A future direction that would greatly simplify
the use of the tool is to automatically generate a Driver file.
Another future improvement for the tool is to transform it
from a tool into a plugin to be used in the build process
of the application. This would reduce the amount of manual
intervention needed by the user. Another advantage of this is
that being part of the build process can make it easier for other
users to use the tool. Another direction would be to adapt
DifFuzzAR so that it could easily be used and distributed
as an IDE plugin. For this, it is likely that adjustments to
the code transformations (e.g. better variable names) and
usability studies should be performed, to ensure that the code
transformations are accepted by the programmers. It would
also be interesting to apply the tool to public projects and
submit any corrections found as pull requests, thus improving

https://github.com/sr-lab/DifFuzzAR

TABLE I
RESULTS OF THE APPLICATION OF DifFuzzAR TO THE DifFuzz DATASET

Example name Has Type Correction Semantically Correct
secure Attempted Correct Vulnerability
version?

Apache FtpServer Clear Yes Mixed Yes No -

Apache FtpServer Md5 Yes Early-Exit (If dependent) Yes No -

Apache FtpServer Salted Yes Mixed Yes No -

Apache FtpServer StringUtils ~ Yes Mixed Yes Yes Yes

Blazer Array Yes Control-Flow Yes Yes Yes

Blazer Gptl4 Yes Control-Flow Yes Yes No

Blazer K96 Yes Control-Flow Yes Yes Yes

Blazer Modpow 1 Yes Control-Flow Yes Yes Yes

Blazer PasswordEq Yes Early-Exit (If dependent) Yes Yes Yes

Blazer Sanity Yes Mixed Yes Yes Yes

Blazer StraightLine Yes Control-Flow Yes Yes Yes

Blazer UnixLogin Yes Control-Flow Yes Yes Yes

Example PWCheck Yes Mixed Yes Yes Yes

GitHub AuthmReloaded Yes Mixed Yes Yes Yes

STAC Ibasys No Control-Flow Yes Yes No

Themis Boot-Stateless-Auth Yes Mixed Yes Yes No

Themis Dynatable No Mixed Yes Yes No

Themis Jdk Yes Mixed Yes Yes Yes

Themis Jetty Yes Mixed Yes Yes Yes

Themis OACC No Mixed Yes Yes Yes

Themis OrientDb Yes Mixed Yes Yes No

Themis Pac4j Yes Control-Flow Yes Yes Yes

Themis PicketBox Yes Mixed Yes Yes No

Themis Spring-Security Yes Mixed Yes Yes No

Themis Tomcat Yes Mixed Yes Yes No

existing software and, simultaneously, obtaining code reviews
from developers (as done in related refactoring projects [20]).

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable and
constructive comments. This work was partially funded by
the PassCert project, a CMU Portugal Exploratory Project
funded by Fundacao para a Ciéncia e Tecnologia (FCT), with
reference CMU/TIC/0006/2019 and supported by national
funds through FCT under project UIDB/50021/2020.

[1]

[2]

[3]

[4]
[5]

[7]

[8]

REFERENCES

Y. Zhou and D. Feng, “Side-channel attacks: Ten years after its publi-
cation and the impacts on cryptographic module security testing.” JACR
Cryptology ePrint Archive, vol. 2005, p. 388, 2005.

F. Koeune and F.-X. Standaert, “A tutorial on physical security and
side-channel attacks,” in Foundations of Security Analysis and Design
1. Springer, 2005, pp. 78-108.

Nate Lawson. Timing attack in Google Keyczar library. Accessed
2020-08-17. [Online]. Available: https://rdist.root.org/2009/05/28/
timing-attack-in-google-keyczar-library/

IVC Wiki. Xbox 360 Timing Attack. Accessed 2020-08-17. [Online].
Available: https://beta.ivc.no/wiki/index.php/Xbox_360_Timing_Attack
T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and
S. Wei, “Decomposition instead of self-composition for proving the
absence of timing channels,” ACM SIGPLAN Notices, vol. 52, no. 6,
pp. 362-375, 2017.

J. Chen, Y. Feng, and I. Dillig, “Precise detection of side-channel vul-
nerabilities using quantitative cartesian hoare logic,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017, pp. 875-890.

S. Nilizadeh, Y. Noller, and C. S. Pasdareanu, “Diffuzz: differential
fuzzing for side-channel analysis,” in Proceedings of the 41st Interna-
tional Conference on Software Engineering. 1EEE Press, 2019.
GitHub. (2019) The state of the Octoverse. Accessed 2019-10-07.
[Online]. Available: https://octoverse.github.com/projects#languages

[9]

[10]

(1]
[12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

Cloud Foundry. (2020) These Are the Top Languages for Enterprise
Application Development And What That Means for Busines.
Accessed 2020-08-17. [Online]. Available: https://www.cloudfoundry.
org/wp-content/uploads/Developer- Language-Report_ FINAL.pdf

IBM. (2020) Modern languages for the modern enterprise. Accessed
2020-08-17. [Online]. Available: https://developer.ibm.com/articles/
d-modern-language-modern-enterprise/

J. A. Goguen and J. Meseguer, “Security policies and security models,”
in 1982 IEEE Symposium on Security and Privacy. 1EEE, 1982.

M. Zalewski, “American fuzzy lop,” 2017. [Online]. Available:
http://Icamtuf.coredump.cx/afl

R. Kersten, K. Luckow, and C. S. Pasareanu, “Poster: Afl-based fuzzing
for java with kelinci,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017.
DARPA. (2020) Space/Time Analysis for Cybersecurity (STAC).
Accessed 2020-08-17. [Online]. Available: https://www.darpa.mil/
program/space-time-analysis-for-cybersecurity

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” leee transactions on
software engineering, vol. 38, no. 1, pp. 54-72, 2011.

J. Xuan, M. Martinez, F. Demarco, M. Clement, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in java programs,” IEEE Transactions on
Software Engineering, vol. 43, no. 1, pp. 34-55, 2016.

M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing side-
channel leaks using program repair,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2018, pp. 15-26.

R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,
“Spoon: A Library for Implementing Analyses and Transformations of
Java Source Code,” Software: Practice and Experience, vol. 46, pp.
1155-1179, 2015. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-01078532/document

(2020) EvoSuite: Automatic Test Suite Generation for Java. Accessed
2020-08-27. [Online]. Available: https://www.evosuite.org/

A. Ribeiro, J. F. Ferreira, and A. Mendes, “EcoAndroid: An Android
Studio plugin for developing energy-efficient Java mobile applications,”
in 2021 IEEE 2Ith International Conference on Software Quality,
Reliability and Security (QRS). 1EEE, 2021.

https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
https://beta.ivc.no/wiki/index.php/Xbox_360_Timing_Attack
https://octoverse.github.com/projects#languages
https://www.cloudfoundry.org/wp-content/uploads/Developer-Language-Report_FINAL.pdf
https://www.cloudfoundry.org/wp-content/uploads/Developer-Language-Report_FINAL.pdf
https://developer.ibm.com/articles/d-modern-language-modern-enterprise/
https://developer.ibm.com/articles/d-modern-language-modern-enterprise/
http://lcamtuf. coredump. cx/afl
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://hal.archives-ouvertes.fr/hal-01078532/document
https://hal.archives-ouvertes.fr/hal-01078532/document
https://www.evosuite.org/

	I Introduction
	II Background and Related Work
	II-A Timing Side-Channel Vulnerabilities
	II-A1 Early-Exit Vulnerabilities
	II-A2 Control-Flow Based Vulnerabilities
	II-A3 Mixed Vulnerabilities

	II-B Detection of Timing Side-Channel Vulnerabilities
	II-C Automated Repair Tools
	II-D Automated Repair of Timing Side-Channel Vulnerabilities

	III System Overview
	IV Identification of Vulnerable Methods
	V Correction of Vulnerabilities
	V-A Correcting Early-Exit Timing Side-Channel Vulnerabilities
	V-B Correcting Control-Flow Timing Side-Channel Vulnerabilities
	V-C Correcting Mixed Timing Side-Channel Vulnerabilities

	VI Evaluation
	VI-A Dataset Used
	VI-B Semantics Preservation
	VI-C Vulnerability Correction

	VII Conclusions
	VII-A System Limitations
	VII-B Future work

	References

