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Abstract

Password managers are important tools that enable us to use stronger passwords, freeing us from the

cognitive burden of remembering them. Despite this, there are still many users who do not fully trust

password managers. In this work, we focus on a feature that most password managers offer that might

impact the user’s trust, which is the process of generating random passwords. We survey which algo-

rithms and protocols are most commonly used and we propose a solution for a formally verified reference

implementation of a password generation algorithm. Finally, we realize this reference implementation

in Jasmin and we prove that the concrete implementation preserves the verified properties. We use

EasyCrypt as our proof framework and Jasmin as our programming language.
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Resumo

Gestores de Password são importantes ferramentas que nos permitem utilizar passwords fortes, libertando-

nos do esforço cognitivo de as ter de memorizar. Apesar disto, ainda há muitos utilizadores que não

confiam totalmente em gestores de passwords. Neste trabalho, focamo-nos numa feature que a maio-

ria dos gestores de passwords oferece, que pode ter impacto na confiança dos mesmos, que é o

processo de gerar passwords aleatórias. Pesquisamos quais os algoritmos e protocolos mais utilizados

e propomos uma solução para uma implementação de referência de um algoritmo de geração de pass-

words formalmente verificado. Finalmente, concretizamos a implementação de referência em Jasmin, e

provamos que esta implementação preserva as propriedades verificadas. Utilizamos EasyCrypt como

o ambiente de prova e Jasmin como linguagem de programação.

Palavras Chave

Gestor de Passwords, Geração de Passwords Aleatórias, Verificação Formal, Segurança, EasyCrypt,

Jasmin.
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Passwords are still one of the most commonly-used means of user authentication. Although there

are lots of research around password-based authentication [1–5], there are still many problems and

vulnerabilities regarding password authentication, for instance: users still use weak passwords that can

be guessed [6] and password leaks seem to keep on happening [7, 8]. So, in general, security experts

recommend using password managers for both storing and generating strong random passwords [9].

Despite these recommendations, users tend to reject password managers, mostly because they do not

fully trust these applications, or because they are not convenient [10–12].

While trying to understand why users adopt password managers, different researchers observed

that users consider the generation of random passwords as one important feature that makes them use

these applications [10]. Moreover, users who do not use password managers with built-in password

generators more often have weaker passwords and tend to reuse them [11]. Security experts have

already warned about how dangerous it is to have weak passwords and, even worse, to reuse those

weak passwords [13]. These studies suggest that a strong password generator that users can fully

trust is a must-have feature for password managers, and guaranteeing that the generator is functionally

correct and secure is an important concern.

1.1 Work Objectives

In this thesis, we have as main objectives the development of a formally verified reference implementa-

tion of a random password generator (RPG) and the implementation of it using Jasmin [14]. As for this

work, we want to prove two properties about the reference implementation: its functional correctness and

security. These properties can be described in natural language as such: (1) Functional Correctness =

generated passwords always satisfy the input password composition policy; (2) Security = the probability

of one password being generated is the same as any other password (given the set of passwords that

can be generated according to the password composition policy).

This reference implementation and its properties will be specified in EasyCrypt [15], an interactive

framework for verifying the security of cryptographic constructions and protocols. This allows us to

reason about the reference implementation directly in the framework.

To understand the state of the art on random password generation, and how we should reason about

RPGs, we survey currently used and popular password managers’ RPGs.

Regarding the Jasmin implementation, we want to integrate it into a password manager, as a proof-

of-concept of our solution. We want to prove the equivalence between this Jasmin implementation and

the reference implementation in EasyCrypt, in order to guarantee that our concrete implementation also

satisfies the two previously mentioned properties.

Finally, we want to evaluate the efficiency of the Jasmin implementation.
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1.2 Contributions

In summary, our contributions are:

• A study of the RPGs of currently used and popular password managers;

• A reference implementation of an RPG modelled in pseudo-code and EasyCrypt;

• Functional Correctness proof of the reference implementation in EasyCrypt;

• Formalization of the security property in EasyCrypt alongside with a short proof sketch;

• Implementation of the RPG in Jasmin;

• Proof of equivalence between the reference implementation and the Jasmin implementation in

EasyCrypt, from where one can derive that the Jasmin implementation preserves the desired

properties.

This work was developed on the context of the PassCert project1. PassCert is a project that tries to

combine formal verification of software with password security. Specifically, the objective is to build a

proof-of-concept password manager that, through the use of formal verification, is guaranteed to satisfy

properties on data storage and password generation, with the final goal of understanding how these

proofs can help users gain more trust regarding these applications and increase their adoption. This

thesis is the result of our contribution on this project, where we focused on the random generation of

passwords, which is a feature that most password managers offer.

Research Papers. Parts of the work presented in this thesis were used in the following research

papers:

• Miguel Grilo, João F. Ferreira, and José Bacelar Almeida. Verified Password Generation from

Password Composition Policies. Presented at INFORUM 2021 (Comunicação). arXiv preprint

arXiv:2106.03626. 2021 [16]

• Miguel Grilo, João Campos, João F. Ferreira, José Bacelar Almeida, and Alexandra Mendes.

Verified Password Generation from Password Composition Policies. Submitted for publication.

2021 [17]

1PassCert is a CMU Portugal Exploratory Project funded by Fundação para a Ciência e Tecnologia (FCT), with reference
CMU/TIC/0006/2019
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1.3 Organization of the Document

In Section 2 we present the background needed to understand how we designed our RPG and how the

proofs are structured. So, we present the necessary notions on password generation, mostly based on

a survey we made to currently used password managers, and we show the logics of EasyCrypt and how

proofs are performed. In Section 3 we show how we designed our reference implementation and the

concrete instance of it programmed in Jasmin. Section 4 presents how we specified the properties of

our RPG and how we proved functional correctness, using EasyCrypt. In Section 5, we demonstrate the

process of integrating the Jasmin implementation with a password manager (Bitwarden) as a proof-of-

concept of our solution. We also make an evaluation of the performance of our RPG implementation.

Finally, in Section 6 we describe our main results, the limitations of this work, and what we think that

should be done as future work.
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In this chapter we present the state of the art on RPGs used in password managers based on a

survey to currently used password managers. We also present the technologies that we are going to

use for our solution and explain why we have chosen them.

2.1 Random Password Generators Survey

As our first objective, we surveyed the algorithms and protocols for generating random passwords used

by different password managers. We must mention that while some password managers only offered

the option of generating a random password, many others offered as well the option of generating a

random passphrase (a phrase of a set of words typically separated by a special character). Here, we

only focus on “regular” passwords because it is still the most common way of user authentication and

because while passphrases seem to be an enhancement to usability and maybe to security, it is still not

clear if they are indeed better than passwords [18].

We studied a total of 15 password managers, but in this work we focus on three of them: Google

Chrome’s Password Manager (v89.0.4364.1)1, Bitwarden (v1.47.1)2, and KeePass (v2.46)3. We have

chosen these password managers because they are some of the most popular today and also because

they are open-source, which allows us to access their source codes and have a deeper understanding

of how they generate random passwords.

Note: Password managers are applications for users to generate and store their passwords safely, so

typically they expect a user to be interacting with them. However, some password managers have a

more “passive” role in storing passwords, like in Chrome’s password manager, where the user can not

ask arbitrarily to generate a new random password. These passwords are generated the moment a

user registers to a new website automatically. So, sometimes the interface that the password manager

offers is not intended for the regular user but for the website that the user is registering to. As these

interfaces are identical, we only mention “user” as both the user or the website (unless we want to

mention something specific to a website interaction).

2.1.1 Password Composition Policy

All studied password managers allow users to define a password composition policy regarding the pass-

word to be generated. These policies define the structure of the password, meaning that normally they

are used to specify the password length, the different sets of characters that may appear on the gener-

ated password, etc. They are the input that is given to the RPG.

1https://source.chromium.org/chromium/chromium/src/+/master:components
2https://github.com/bitwarden
3https://github.com/dlech/KeePass2.x
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Chrome Bitwarden KeePass

Password length 1-200 5-128 1-30000

Available sets

Lowercase Letters
Uppercase Letters

Alphabetic
Numbers

Special Characters

Lowercase Letters
Uppercase Letters

Numbers
Special Characters

Lowercase Letters
Uppercase Letters

Numbers
Special Characters

Brackets
Space
Minus

Underline
Minimum and

maximum
occurrences of

characters per set

Yes Yes. Can only
define minimum No

Exclude similar
characters Yes {l o I O 0 1} Yes {l I O 0 1} Yes {l I O 0 1 |}

Define by hand
a character set No No Yes

Define by hand
a character set
to be excluded

No No Yes

Remove duplicates No No Yes

Table 2.1: Available policy adjustments offered. The Alphabetic set in Chrome is the union of Lowercase Letters
and Uppercase Letters. Special Characters in Chrome and Bitwarden are the set {- . : !} while in
KeePass it is {! ” # $ % & ’ * + , . / : ; = ? @ \ˆ |}. The Brackets set in KeePass is {( ) { } [ ] ¡ ¿}. The
Space, Minus, and Underline are the single element sets { }, {-}, and { } respectively.

Password composition policies are used to strict the space of user-created passwords to preclude

easily guessed passwords and thus make passwords more difficult for attackers to guess. While gen-

erally speaking this is good for the security of the password, this has the problem of reducing usability.

Also, sometimes strict policies can generate some easily guessed passwords (e.g., a policy that en-

forces the use of lowercase letters, uppercase letters, numbers, and special characters may generate

the easily guessable password “P@ssw0rd”) [19]. In order to help users avoiding these weak passwords

to be generated from strict policies, password managers are often equipped with a password strength

meter that warns them about the strength of the password (for example, Bitwarden uses zxcvbn [20],

KeePass defines their own strength meter, and Chrome does not use any strength meter).

We gathered the different policy adjustments for the generated passwords that our three studied

password managers offer, and we present that information in Table 2.1.
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2.1.2 Random Password Generation

Almost all password managers use different algorithms to generate random passwords. However, the

way they do it is very similar.

The main idea of these algorithms is to generate random characters from the union of the different

character sets defined in the composition policy until the password length is fulfilled. Notice that when

the user changes the composition policy, the only impact on the generation process is that it changes

the amount of sets we can sample from and the characters that belong to those sets (e.g., if we exclude

the similar characters we just remove the respective characters from their sets). The only exception is

when the user defines the minimum and maximum occurrence of characters per set, which makes the

algorithm less trivial. To show how this is achieved, we present the following pseudo-code (Algorithm 1)

which is a generalization of the algorithms of the three password managers, being more closely related

to Chrome’s algorithm.

Algorithm 1 General Password Generation Algorithm

1: procedure GENERALGENERATE(policy)
2: password← ε
3: foreach set ∈ policy.charSets do
4: for i = 1, 2, . . . , set.minOccurences do
5: char ← Sample uniformly at random a char from set
6: password← password ||char . ‘||’ is the append operator
7: end for
8: end for
9: while len(password) < policy.passwordLength do

10: char ← Sample uniformly at random a char from the union of sets which have not yet reached
their maximum number of occurrences of characters

11: password← password ||char
12: end while
13: Generate a random permutation of password
14: Output password
15: end procedure

In general, these algorithms first iterate over all the sets from which they should sample from, accord-

ing to the policy, and samples minOccurrences characters from each of them, appending them to the

initially empty string password. Then, while the length of password is smaller than the passwordLength

defined in the policy, the algorithm samples a character from the union of sets which have not yet

reached their maximum number of occurrences of characters, and appends it to password. Finally, it

generates a permutation of password and outputs it.

As said before, the previously described algorithm is essentially the same as Chrome’s. KeePass’s

algorithm is simpler, since the user is not able to establish neither the minimum nor the maximum number

of occurrences of characters per set. So there is no need to generate any string permutation, one just

needs to define the single set of characters, which is the union of all available sets, and then randomly

8



generate characters from that set.

Regarding Bitwarden, the only difference compared to the general algorithm described before is that

is makes the permutation before generating the characters (i.e., it creates a string like ‘llluunl’ to say that

the first three characters are lowercase letters, the following two are uppercase letters, then a number,

and finally another lowercase letter. Only then it generates the characters from the sets and places them

in their respective position).

2.1.3 Random Character Generator

The process of uniformly sampling characters from a set is trivial if we possess a random number

generator (defined in Section 2.1.5). One just needs to index each character from the set (this comes

automatically if we instantiate our sets as lists) and then we generate a number from 0 to the size of the

set uniformly at random, and we output the character with that number as index. Algorithm 2 describes

this process.

Algorithm 2 General Random Char Generator

1: procedure GENERALRANDOMCHARGENERATOR(set)
2: choice← Random number in the interval [0; set.size[
3: char = set[choice]
4: Output char
5: end procedure

2.1.4 String Permutation

Given the need to generate a random permutation of the characters of a string, Bitwarden and Chrome

both implement the Fisher-Yates shuffle [21]. The idea is to randomly choose one character from the

original string for each position of the new string. This method is described in pseudo-code in Algorithm

3.

Algorithm 3 General String Permutation

1: procedure GENERALPERMUTATION(string)
2: for i = len(string)− 1, . . . , 0 do
3: j ← Random number between 0 and i
4: aux = string[i]
5: string[i] = string[j]
6: string[j] = aux
7: end for
8: Output string
9: end procedure

9



2.1.5 Random Number Generator

As we can see from Sections 2.1.3 and 2.1.4, the RPG needs to have some source of randomness to

generate the characters and a permutation of strings of characters. So, the password generator naturally

needs to use an implementation of a Random Number Generator (RNG) that generates random numbers

within a range of values, which should be sample according to a uniform distribution.

After inspecting the code of the three password managers, we noticed that Chrome and KeePass

had an identical RNG, mainly because they generate numbers from 0 to an input range. The main idea

of these two password managers is to generate random bytes, then casting them to an integer, and then

return that value modulo range, so the value it generates is between 0 and range. This is an efficient

way to perform this task.

To generate random bytes, the three password managers considered had different approaches.

Chrome uses different system calls based on the operating system the password manager is running,

Bitwarden uses NodeJS randomBytes() method, while KeePass defines their own random bytes gener-

ator based on ChaCha20.

On uniformity and maximum integer values. One must be careful with the approach described

above because, since there is a finite maximum value for the random integer (typically integers are

represented as 64-bit words, so the maximum would be 264 − 1). This may lead to a non-uniform

distribution over the possible values. For example, if we represent integers using 3-bit words (having the

maximum possible value 23 − 1 = 7 when casting the word to an integer) and if the input range is 5,

then a result of 1 would be twice as likely as a result of 3 or 4 (since 1 mod 5 ≡ 6 mod 5 ≡ 1, while only

3 ≡ 3 mod 5 and 4 ≡ 4 mod 5, in the interval [0; 7]).

So, some of the possible numbers generated by the random bytes generator must be discarded.

This is known as rejection sampling, where we sample values and keep rejecting them until we get one

that satisfies our needs. While this not guarantees termination, it allows the RNG to sample numbers

uniformly, with a very high probability of terminating in very few tries. This is where Chrome and KeePass

slightly differ on their implementation, but they both achieve the same final result.

Chrome’s solution to this problem is to first find the maximum 64-bit unsigned integer maxValue such

that, given an input range, maxV alue ≡ range − 1 mod range (i.e., the greatest multiple of range that

can be written in 64 bits, subtracted by 1). Then, generate random values until it is generated a number

which is smaller or equal to maxValue. Since this maxValue is the maximum value in these conditions,

there is a high probability of generating a valid number in very few tries.

KeePass’s algorithm first generates a random 64-bit unsigned integer value and then calculates

value mod range (where range is again the input). Then, it verifies if the last element of the “block” can

be generated. By block we mean a sequence of contiguous integers i, i + 1, ..., i + range such that by
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applying mod range to each element of the sequence, we respectively obtain 0, 1, ..., range − 1. If the

last element can be generated this means that our random number is fine and the algorithm outputs it.

Otherwise, it keeps on sampling numbers until it samples a satisfactory one.

Chrome and KeePass RNG algorithms are described in pseudo-code in Algorithm 4.

Bitwarden RNG is more complex since it generates numbers from an arbitrary minimum value up to

an arbitrary maximum value. Since in our algorithm we only need to generate numbers from 0 to any

given maximum value, the simpler implementations of Chrome and KeePass are sufficient for us to focus

on.

Algorithm 4 RNGs with maximum range

1: procedure CHROMERNG(range)
2: maxV alue← (uint64.maxV alue/range) ∗ range− 1 . uint64.maxValue is the maximum value

an unsigned integer with 64 bits can take; ‘/’ is the Euclidean division
3: do
4: value← (uint64) GenerateRandomBytes
5: while value > maxV alue
6: return value mod range
7: end procedure
8:
9:

10: procedure KEEPASSRNG(range)
11: do
12: genV alue← (uint64) GenerateRandomBytes
13: value← genV alue mod range
14: while (genV alue− value) > (uint64.maxV alue− (range− 1))
15: return value
16: end procedure

While both Chrome’s and KeePass’s algorithms sample uniformly and are very efficient at doing it

(i.e., reject a very small number of samples) they are still not ideal. We noticed that, for both RNGs,

in some situations there are numbers being rejected that, if accepted, would still produce an uniform

distribution. We will demonstrate with an example only for Chrome’s RNG, because for KeePass it

follows the same idea.

For example if, again, we use 3-bit words to represent our integers (maximum value of 7 after casting

words to integers), and if the input range is 4, Chrome’s RNG will reject samples greater than 3 (since

maxValue will take the value of (7/4)*4-1=3). So, from the interval [0; 7] the algorithm only accepts

integers in the interval [0; 3], but could also accept integers from [4; 7] and the distribution would still be

uniform and the algorithm more efficient (in this particular case we would be sure that there would not

be any sample rejected).

Of course that for 64-bit words, with a small input range (which is the most common case when using

an RNG to sample characters from a set) this does not affect much the efficiency of the algorithm, but

we still took this into consideration and we will improve this rejection sampling in our RNG.
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2.2 Technology Used

In this section we present the chosen frameworks used to implement our solution and why we have

chosen them, and also present other frameworks that could have possibly been used.

2.2.1 EasyCrypt

We use EasyCrypt to implement our RPG reference implementation and to reason about it. Easy-

Crypt [15] is an interactive framework for verifying the security of cryptographic constructions and proto-

cols using the game-based approach. Cryptographic games and algorithms are modeled as modules,

which consist of typed global variables and procedures written in a simple imperative language featur-

ing ordinary assignments, conditional statements, while loops, procedure calls, return statements, and

random sampling operations (assigning values chosen at random from distributions to variables). Figure

2.1 shows an example of a simple module written in EasyCrypt.

module M(N : T) = {

var x : int

proc init(bnd : int) : unit = {

x <$ [-bnd .. bnd];

}

proc get() : int = {

return x;

}

proc main() : int = {

return N.main(get());

}

}.

Figure 2.1: Example of a module in EasyCrypt. This module is parameterized by another module N of type T. In
the init method, x is sampled at random from the uniform distribution over the integers belonging to
the interval [−bnd..bnd].

Built around these modules, EasyCrypt implements program logics for proving properties of im-

perative programs. It has four logics: Hoare Logic (HL), probabilistic Hoare Logic (pHL), probabilistic

relational Hoare Logic (pRHL) [22] and an ambient higher-order logic for proving general mathematical

facts and connecting judgements in the other logics.

Hoare Logic. It is a formal system composed of a set of rules for each syntactic construct of an

imperative language used to reason compositionally about the correctness of programs. In EasyCrypt,

an HL judgement has the form

hoare [M.p : A ==> B]

where p is a procedure of module M; A is an assertion (precondition) on the initial memory that may
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involve global variables of declared modules as well as parameters of M.p; B is an assertion (postcondi-

tion) on the final memory which may involve the term res which is the returned value of M.p, as well as

global variables of declared modules.

The informal meaning of the HL judgment is that, for an initial memory &m satisfying A, if running the

body of M.p in &m results in termination with another memory &m’, &m’ satisfies B.

Probabilistic Hoare Logic. Similar to HL, but allows carrying out proofs about the probability of a

procedure’s execution resulting in a memory satisfying a given postcondition. In EasyCrypt, a pHL

judgement has one of the forms

phoare [M.p : A ==> B] < e

phoare [M.p : A ==> B] = e

phoare [M.p : A ==> B] > e

where p is a procedure of module M; A is an assertion (precondition) on the initial memory that may

involve global variables of declared modules as well as parameters of M.p; B is an assertion (postcondi-

tion) on the final memory which may involve the term res which is the returned value of M.p, as well as

global variables of declared modules; e is an expression of type real.

The informal meaning of the pHL judgment is that, for an initial memory &m satisfying A, the proba-

bility of running the body of M.p in &m and it resulting in termination with a memory &m’ satisfying B, has

the indicated relation to the value of e.

Probabilistic Relational Hoare Logic. Variant of HL which reasons about two programs are related

to each other. In EasyCrypt, a pRHL judgement has the form

equiv [M.p ~ N.q : A ==> B]

where p is a procedure of module M and q is a procedure of module N; A is an assertion (precondition)

on memories &m1 and &m2 (where module M and N will be run, respectively) that may involve global vari-

ables of declared modules as well as parameters of M.p and N.q which must be respectively interpreted

in memories &m1 and &m2; B is an assertion (postcondition) on the final memory distributions (since

both programs might be probabilistic) which may involve the term res{1} which is the returned value of

M.p and res{2} which is the returned value of N.q, as well as global variables of declared modules.

The informal meaning of the pRHL judgment is that, for an initial memories &m1 and &m2 satisfying

A, then the distributions on memories d&m1’ and d&m2’, respectively obtained by running M.p on &m1

and N.q on &m2, satisfy B.

All of these judgements can be used to write lemmas in EasyCrypt, that must be resolved using

tactics, which are logical rules embodying general reasoning principles, which transform lemmas into

zero or more subgoals – sufficient conditions for the lemma to hold. If there are no more subgoals to
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solve, we have proved our lemma. The following code shows an example of a simple lemma written in

EasyCrypt, which formalizes the symmetry property of the equality relation between integers:

lemma Sym (x y : int) : x = y => y = x.

This information and more can be obtained from the EasyCrypt reference manual [23].

2.2.2 Jasmin

We use Jasmin to have a concrete implementation of the reference implementation (which is then com-

piled to assembly) so we can link this module to a password manager. Jasmin [14] is a framework for de-

veloping high-speed and high-assurance cryptographic software, which is structured around the Jasmin

programming language and its compiler. The programming language combines high-level (structured

control-flow, variables, etc.) and low-level (assembly instructions, flag manipulation, etc.) constructs

while guaranteeing verifiability of memory safety and constant-time security. The compiler transforms

Jasmin programs into assembly, while preserving behavior, safety, and constant-time security of the

source code. Almeida et al [14] mentioned that this programming language, while being easily verifi-

able, is as efficient as some state-of-the-art high-speed software such as qhasm [24].

Programs that are compiled from Jasmin are guaranteed to preserve their behaviour when compiled

to assembly, which ensures that properties of programs in Jasmin provably carry to their assembly

implementations. Jasmin’s compiler has this property proven in Coq [25].

2.2.3 Why EasyCrypt with Jasmin

As previously mentioned, EasyCrypt was chosen because it provides the essential logics to reason

about cryptographic constructions using the game-based approach, which is necessary to prove the

security property of the generator.

Regarding Jasmin, it was chosen because it allows us to build a low-level efficient algorithm, with the

necessary high-level constructs that help us reason and verify the properties of our implementation.

Also, the Jasmin framework provides a way of automatically generating the model of a Jasmin pro-

gram to EasyCrypt, while having the assurance that we are reasoning about that exact Jasmin code.

Moreover, these frameworks when used together have shown good results on building and verifying

high-assurance and high-speed cryptographic code, such as the ChaCha20 and Poly1305 implementa-

tions proposed by Almeida et al [26]. These Jasmin implementations have their functional correctness

and constant-time security verified in EasyCrypt, and they outperform the fastest non-verified counter-

parts. SHA3 was also built and proven correct, secure, and time-attack resistant using this method-

ology, matching the performance of state-of-the-art implementations and even outperforming some of

them [27].
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2.2.4 Other Frameworks

There were other interesting options for the programming language and the proof framework besides

the the ones we have chosen.

Regarding the programming language, one can obviously construct efficient cryptographic code us-

ing a low-level programming language like assembly. The problem with using assembly code is precisely

the fact that it is a low-level language which makes it hard to implement such algorithms, and then to

understand, analyze, and verify them.

One solution to this problem is to use an higher-level language such as C. However, in order to obtain

efficient code, extensive optimizations must be performed which are not achievable even by modern,

highly-optimized compilers. Even if a compiler does that, it might still not be the best option because

while such optimizations should preserve functionality and correctness they might lead to some security

vulnerabilities [28]. HACL* [29] is a formally verified library of cryptographic code written in assembly that

uses this method. HACL* takes state-of-the-art optimized C implementations and them adapt them to

F* [30]. The security formal proofs are made in the F* code and then these programs are compiled to C

and then to assembly. This is a good reason for us to chose Jasmin as our programming language, over

an higher-level language like C. Also, the algorithms implemented in Jasmin and verified with EasyCrypt

are more efficient than those available in HACL* [26,27].

Bond et al proposed Vale [31], a tool and a programming language for proving functional correct-

ness and side-channel protection of cryptographic constructions. Vale is a flexible framework where

implementations are written in annotated assembly, which are then translated into an abstract syntax

tree (AST), while also generating proofs about that AST that are verified with an SMT solver. Besides

being portable across different architectures, Vale produces really efficient code, yet not as efficient as

unverified assembly code.

CertiCrypt [32] is, like EasyCrypt, an automated framework to construct and verify security proofs of

cryptographic systems using the game-playing method. It is built on top of Coq [25], which is a more

general formal proof framework. So, it provides generality (its language is expressive enough to capture

all notions and assumptions used by cryptographers) and high-assurance. Besides these, CertiCrypt

mechanizes most of the techniques required for game-based arguments. The main issue with CertiCrypt

is that it lacks automation.
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In this thesis, based on the information obtained from our survey presented in Section 2, we propose

a reference implementation of an RPG. We first present it in pseudo-code and then we specify it in

EasyCrypt. Moreover, we implement it using Jasmin, which can then be compiled to assembly. Both the

reference implementation and the Jasmin implementation have two properties verified: their functional

correctness and security.

Our solution follows the structure depicted in Image 3.1.

RPG Reference 
Implementation

RPG Jasmin 
Modelled in EC

RPG Instance
Equivalent

RPG Instance

Compiled

EasyCrypt

Jasmin

Assembly

Automatically 
generated

Figure 3.1: Structure of the solution.

Our methodology, based on the approach for building high-assurance and high-efficient crypto-

graphic implementations proposed by Almeida et al [26], follows these lines: we first model the ref-

erence implementation in EasyCrypt, and we prove the desired properties. Then, we implement it in

Jasmin and, using the Jasmin framework, we automatically extract an equivalent version of it modelled

in EasyCrypt. We prove the equivalence between this model and the reference implementation, con-

cluding that it also satisfies the properties, from where we can derive that the Jasmin implementation is

also correct and secure. Finally, as shown in Section 2.2.2, the assembly version of our implementation

also preserves the properties from Jasmin, which is a feature that comes from the Jasmin framework

and its formally verified compiler.

3.1 Reference Implementation

We propose a reference implementation for an RPG which offers the following policy adjustments: (1)

the user can define the password length in the interval [1; 200]; (2) the user can choose which sets to
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use (from Lowercase Letters, Uppercase Letters, Numbers, and Special Characters); (3) the user can

define the minimum and maximum occurrences of characters per set.

First, we write some definitions and present the pseudo-code of our reference implementation, and

then we show some concrete definitions, alongside the algorithm, written in EasyCrypt.

3.1.1 Definitions on Password Composition Policies

Taken into consideration the specification presented at the beginning of this section, we say that a policy

is a record with the following fields: Length, LowercaseMin, LowercaseMax, UppercaseMin, Uppercase-

Max, NumbersMin, NumbersMax, SpecialMin, and SpecialMax.

Password composition policies can satisfiable or unsatisfiable. A satisfiable password composition

policy implies the existence of a password that is able to satisfy all of the different constraints specified

in the policy. On the other hand, no password is able to satisfy all of the constraints of an unsatisfiable

policy.

In our case, it is easy to see that a policy is satisfiable if its field length is greater than 0, if all min

values are non-negative, if all max values are greater or equal to the corresponding min value, if the

sum of all min values is less or equal to length, and if the sum of all max values is greater or equal to

length. If any of these conditions is not true, then no password is able to satisfy the policy.

We also add to this definition the restriction of the length and also all max fields being less or equal

to 200. While there could be, of course, passwords with a length greater than 200, since the user can

only define passwords with a length within the interval [1; 200], we also add this as a restriction on our

definition. If, for some reason, our algorithm receives as input a composition policy that has its length

defined to a value greater than 200, we say it is unsatisfiable (we do the same for max values greater

than 200).

3.1.2 Algorithm

The algorithm follows the idea from the general Algorithm 1 presented in Section 2.

The entry point is the procedure GENERATEPASSWORD, which receives as input a password compo-

sition policy and, if it is satisfiable, a password is generated and returned. Otherwise, a password is not

generated and null is returned.

To generate a random password, the algorithm first randomly generates characters from the sets that

have a min value greater than 0, and appends them to the password (initially an empty string). Then,

it randomly generates characters from the union of all sets which have fewer occurrences of characters

in password than their max value defined in the policy until the size of password becomes equal to the

length defined in the policy. Finally, it generates a random permutation of the string, and returns it.
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Both the random character generator and the string permutation method are trivial and follow the

idea presented in Algorithm 1.

However, the random number generator we decided to implement has some modifications when

compared to the ones shown in Section 2.1.5, in order to fix the previously mentioned problem of not

having an ideal RNG regarding efficiency. The issue of not using all the possible values that would

generate a uniform random distribution happens when the maximum integer written in an n-bit word

plus 1 is a multiple of the input range. Both Chrome’s and KeePass’s do not check this corner case.

In our RNG, before calculating the maximum value that we can accept, we just check if the maximum

number written in a 64-bit word plus 1 is a multiple of the input. If it is, we can sample without the need

of rejecting samples. As discussed in Section 2.1.5, this algorithm is not guaranteed to terminate. But,

since the maximum possible value for the input to this algorithm is 76 (when we are sampling characters

from the union of all sets), and since we are representing integers with 64-bit words (which allows us to

sample integers in the interval [0, 264 − 1]), the probability of a sample being rejected is very small, thus

we can say that the algorithm terminates in “expected polynomial time”.

Regarding the random bytes generator, we use the x86 instruction RDRAND. In this work we assume

that this procedure is secure (i.e., samples bytes according to a uniform distribution).

All of these methods are captured by the pseudo-code presented in Algorithm 5.

3.2 Reference Implementation in EasyCrypt

In this section we describe how we have specified in EasyCrypt the pseudo-code presented in Section

3.1.

We call our reference implementation RPGRef and we say that it is of type RPG_T. Modules of this

type implement the following interface

module type RPG_T = {

proc generate_password(policy:policy) : password option

}.

where the header of the generate_password method is defined. This method should receive a

policy and output a password option.

Figure 3.2 shows the definitions of the necessary types used to reason about password generation.

Instances of type char are integers (which can be directly mapped to the corresponding ASCII charac-

ter), and both the types password and charSet are lists of chars. The type policy is a record type, with

the previously mentioned fields instantiated as integers.

We note the use of password option for the output of the generate_password method, which ex-

tends the password type with the extra element None. This allows us to return Some password in case
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Algorithm 5 Reference Implementation Pseudo-Code

1: procedure GENERATEPASSWORD(policy)
2: if policy is satisfiable then
3: password← ε
4: foreach set ∈ policy.charSets do
5: set.available← set.max . field available stores the number of characters we can still

sample from set
6: for i = 0, 1, 2, . . . , set.minOccurrences do
7: char ← RANDOMCHARGENERATOR(set)
8: password← password||char
9: set.available← set.available− 1

10: end for
11: end for
12: while len(password) < policy.length do
13: unionSet←

⋃
set∈policy.charSets set such that set.available > 0

14: char ← RANDOMCHARGENERATOR(unionSet)
15: password← password||char
16: set.available← set.available− 1
17: end while
18: password← PERMUTATION(password)
19: return password
20: else
21: return null
22: end if
23: end procedure
24:
25: procedure RANDOMCHARGENERATOR(set)
26: choice← RNG(set.size)
27: return set[choice]
28: end procedure
29:
30: procedure PERMUTATION(string)
31: for i = len(string)− 1, . . . , 0 do
32: j ← RNG(i)
33: aux = string[i]
34: string[i] = string[j]
35: string[j] = aux
36: end for
37: return string
38: end procedure
39:
40: procedure RNG(range)
41: modV alue← uint64.maxV alue mod range
42: if modV alue = range− 1 then
43: maxV alue← uint64.maxV alue
44: else
45: maxV alue← uint64.maxV alue−modV alue− 1
46: end if
47: do
48: value← #RDRAND
49: while value > maxV alue
50: return value mod range
51: end procedure
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the policy is satisfiable, and None otherwise.

type char = int.

type password = char list.

type charSet = char list.

type policy = {

length : int;

lowercaseMin : int;

lowercaseMax : int;

uppercaseMin : int;

uppercaseMax : int;

numbersMin : int;

numbersMax : int;

specialMin : int;

specialMax : int

}.

Figure 3.2: Type definitions.

Regarding the reference implementation methods, it is

fairly easy to see how the abstract version of this module

maps to the EasyCrypt implementation.

However, there are some small differences. The most

noticeable is the definition of union of sets. In the abstract

implementation, we simply say that the the unionSet vari-

able takes the union of all sets such that their max values

are greater than 0, using mathematical notation. In Easy-

Crypt we have the method define_union_set which imple-

ments this process. The main idea of this method is similar

to the abstract version, where the algorithm creates a union

of the sets which have not already reached their maximum

number of occurrences, by appending them together.

This algorithm is in Appendix A, but it can also be found

online1.

3.3 Jasmin Implementation

We have implemented in Jasmin our proposed reference im-

plementation, in order to have a concrete module that could be integrated into a password manager.

The code is, naturally, closely related to the reference implementation. But, being Jasmin a low-level

programming language, there are obviously some specific implementation details that are different from

the more abstract reference implementation written in EasyCrypt.

Due to the nature of the programming language, the first difference is that everything is represented

as bit words. The different policy fields are 64 bit words and characters are 8 bit words. Policies,

characters sets, and passwords are arrays of these bit words.

Another difference is on the input/output. The generate_password method receives as input two

pointers: (1) policy_addr which is a pointer to a region of memory where the program expects to

receive, in contiguous positions, the different fields of the password composition policy; (2) output_addr

which is a pointer for the memory zone where the program is supposed to write the generated password,

in case the policy is satisfiable. The reference implementation simply receives as input an instance of

the more abstract type policy and outputs a password option.

The Jasmin implementation outputs an integer which gives feedback about the generated password.

1https://github.com/passcert-project/random-password-generator/blob/main/EC/passCertRPGSpec.ec
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In case the output is positive (i.e., 1), it means that the input policy was satisfiable and the Jasmin

implementation wrote on memory (starting on address output_addr) the generated password. In case

it is negative, it means that the input policy was unsatisfiable and nothing was written on memory.

The Jasmin implementation also provides some additional feedback on why the policy is unsatisfiable,

compared to the reference implementation. The output can take different negative values depending on

the reason why the policy unsatisfiable (e.g., if the output is -1 it means that the length field is greater

than 200).

Another noticeable difference is that arrays must have a constant size in Jasmin. So our variable that

stores the union of sets as a size of 76 positions, independently of the sets that compose it. We fill the

unnecessary positions with zeros.

The Jasmin implementation is in Appendix A, and it is also available online2. We also provide an

example of a simple program calling our Jasmin implementation written in C3.

3.4 Jasmin Implementation modelled in EasyCrypt

The Jasmin framework implements an embedding of Jasmin programs in EasyCrypt, where x86 instruc-

tions over 64-bit words and the memory model of Jasmin are encoded.

This feature enables automatic extraction of Jasmin programs into an equivalent EasyCrypt model of

that same program. This is true provided that the Jasmin program is safe [26]. Broadly speaking, safety

entails termination, array accesses are in bounds, memory accesses are valid and arithmetic operations

are applied to valid arguments.

Given that our RNG is not guaranteed to terminate, one cannot say that the implementation is safe.

So we cannot automatically derive that the real Jasmin implementation and the one modelled in Easy-

Crypt are equivalent. But we argue that, by inspection, these two modules are equivalent.

The code of this EasyCrypt model can be found online4.

2https://github.com/passcert-project/random-password-generator/blob/main/Jasmin/passCertRPG.jazz
3https://github.com/passcert-project/random-password-generator/blob/main/C/RPG_app.c
4https://github.com/passcert-project/random-password-generator/blob/main/EC/passCertRPG_jazz.ec
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In this chapter, we show how we specified our properties in an informal way, followed by the specifi-

cation in EasyCrypt. Then, we demonstrate the reasoning behind the proofs.

We first show how we proved the two properties in EasyCrypt for the reference implementation, and

then we show how, by proving the equivalence between the reference implementation and the Jasmin

implementation, we can derive that the Jasmin implementation is also functionally correct and secure.

4.1 Functional Correctness

We say that an RPG is functionally correct if, given any policy, every password it generates satisfies that

policy. This property guarantees that users will always get an output according to their expectations.

We follow the standard approach of expressing correctness of a scheme by using a probabilistic

experiment that checks if the specification is fulfilled.

CorrectnessRPG(policy)

pwd← RPG.generate password(policy)

if policy is satisfiable

return satisfiesPolicy(policy, pwd)

else

return isNull(pwd)

fi

Figure 4.1: Correctness Experiment (Abstract)

Figure 4.1 shows the Correctness

experiment, which is parameterized by

an RPG implementation that, for any

policy, outputs true if the RPG behaves

according to the specification.

Specifically, if the experiment re-

ceives as input a policy that is satis-

fiable, it checks if the parameterized

RPG generates a password that satis-

fies that policy. Otherwise, it checks if

the RPG outputs null.

We want to prove that this exper-

iment parameterized by our reference

implementation outputs true with prob-

ability 1 (for any input policy ).

4.1.1 EasyCrypt Definition

In EasyCrypt, the correctness experiment is modelled as the module Correctness, shown in Figure 4.2.

It is parameterized by a password generator implementation (being RPG_T its signature), and has a single

method main encoding the experiment. The experiment simply executes the RPG.generate_password

method and, depending on the satisfiability of the policy, either checks if the generated password satis-

fies it, or if it is equal to None (is_some and is_none are predicates that query the constructor used in an
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optional value, and oget extracts a password from it). This EasyCrypt specification is available online1.

module Correctness(RPG : RPG_T) = {

proc main(policy:policy) : bool = {

var pw : password option;

var satisfied : bool;

pw <@ RPG.generate_password(policy);

if(satisfiablePolicy policy) {

satisfied <- is_some pw /\ satisfiesPolicy policy (oget pw);

}

else {

satisfied <- is_none pw;

}

return satisfied;

}

}.

Figure 4.2: Correctness Experiment (EasyCrypt)

The correctness property can be expressed in EasyCrypt as follows:

lemma rpg_correctness :

Pr[Correctness(RPGRef).main : true ==> res] = 1%r.

It states that, running the correctness experiment (main method) of the Correctness module instan-

tiated with our RPG reference implementation, produces the output true with probability 1 (for any input

policy ).

4.1.2 EasyCrypt Proof

The proof of this lemma amounts essentially to proving termination of the main method, which also

entails termination of the generation procedure, while also proving, using Hoare logic, that this method

always returns true, independently on the policy given as input. These two properties can be expressed

by the two following lemmas, respectively:

lemma c_lossless :

islossless Correctness(RPGRef).main.

lemma c_correct p :

hoare [Correctness(RPGRef).main : policy = p ==> res].

The assertion islossless states that Correctness(RPGRef).main always terminates, for any input.

This can be easily proved if we prove termination of our RPG, since the main method is composed by

an if-else statement, regular assignments, and a call to RPGRef.generate_password.

1https://github.com/passcert-project/random-password-generator/blob/main/EC/RPGTh.eca
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Proving that the RPG terminates amounts to proving that each of the while loops of the algorithm will

eventually finish. We proved it for all of the whiles in the algorithm, except for the one from the RNG.

In fact, we are not able to prove that this loop terminates, but, as shown in Section 2.1.5, the number

of iterations we need to perform before exiting the loop is, most likely, very small, and it will eventually

finish. So, we have the axiom

axiom rng_ll : islossless RPGRef.rng.

which states that the RNG terminates. So, we are able to prove termination of the RPG, thus proving

termination of the Correctness module.

The second lemma is an Hoare triple, as presented in Section 2.2.1. To prove this Hoare triple,

we need to prove that the main method outputs a password that satisfies the input policy, in case it is

satisfiable, and None if it is not satisfiable. These ideas can be expressed with the following lemmas:

lemma rpg_correctness_sat_pcp_hl (p:policy) :

hoare [RPGRef.generate_password : policy = p /\

satisfiablePolicy p

==>

is_some res /\ satisfiesPolicy p (oget res)].

and

lemma rpg_correctness_unsat_pcp_hl (p:policy) :

hoare [RPGRef.generate_password : policy = p /\

!(satisfiablePolicy p)

==>

res = None].

The second lemma is trivial to prove, because the first thing our RPG implementation does is to

check if the input policy is satisfiable. If it is not, our RPG outputs None.

To simplify the reasoning around the first property, when the policy is satisfiable, one can separate

the proof into two steps: first we prove that the length defined in the policy is satisfied, and then we prove

that the different bounds of minimum and maximum occurrences per set are also satisfied. This means

that we should first prove the lemmas

lemma rpg_correctness_length_hl (p:policy) :

hoare [RPGRef.generate_password : policy = p /\

satisfiablePolicy p

==>

is_some res /\ satisfiesLength p (oget res)].

and
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lemma rpg_correctness_bounds_hl (p:policy) :

hoare [RPGRef.generate_password : policy = p /\

satisfiablePolicy p

==>

is_some res /\

satisfiesBounds p (oget res)].

Finally, we can combine these two lemmas to prove the lemma rpg_correctness_sat_pcp_hl since

we can use hoare[ C : P ==> Q1] and hoare[ C : P ==> Q2], to conclude hoare[ C : P ==> Q1 /\ Q2].

Using rpg_correctness_sat_pcp_hl and rpg_correctness_unsat_pcp_hl, we can prove the lemma

c_correct using Hoare logic rules. With the lemmas c_lossless and c_lossless proved, we can

combine them to finally prove our main lemma rpg_correctness, which ensures that our RPG imple-

mentation is correct.

4.2 Security

The security of a random password generator shall be assessed by measuring how difficult it is, for an

attacker, to successfully guess the generated password. Considering that the attacker has no access

to side-channels and is only able to see the input and the output of the generation process, the hardest

way for the attacker to guess the output is if all the passwords that can possibly be generated by the

input policy have the same probability of being generated. This means that, ideally, our RPG should

produce a uniform distribution over its output.

proc IdealRPG(policy)

if policy is satisfiable

password ←$ p ⊂ P

return password

else

return null

fi

Figure 4.3: Ideal RPG. p is the subset of the
set of all possible passwords P
that satisfy the given policy.

So, we say that an RPG is secure if, given any policy,

the generated password has the same probability of being

generated as any other possible password that satisfies that

policy. To prove this property we can use the game-based

approach for cryptographic security proofs [33,34].

We create a module called IdealRPG which, in case it re-

ceives as input a satisfiable policy, outputs a password sam-

pled from the subset of passwords that satisfy the policy,

according to a uniform distribution over that subset.

If the policy is not satisfiable, it outputs null. This module

is shown in Figure 4.3. In order to consider our implementa-

tion secure, we must show that any program (e.g., attacker)

that has oracle access to the IdealRPG and our RPG can

not distinguish whether it is interacting with one or the other.
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To achieve this, we can use probabilistic relational Hoare Logic (pRHL) to show that both modules’

generate_password methods produce the same result (they have the same distribution over their output,

given any input). We can avoid directly reasoning about the indistinguishability between these two

modules, since their implementations are significantly different. By using the game-based approach, we

can implement intermediate modules that are more closely related, thus breaking the proof into smaller

steps that are easier to justify.

4.2.1 EasyCrypt Definition

To construct the IdealRPG module, we start by axiomatizing uniform distributions over the type of pass-

words:

op dpassword : password distr.

(*1*) axiom dpassword_ll : is_lossless dpassword.

(*2*) axiom dpassword_uni : is_uniform dpassword.

(*3*) axiom dpassword_supp : forall p, p \in dpassword => validPassword p.

The operator dpassword is the declared distribution over the type password. The axioms defined

are important properties about this distribution: (1) lossless means that it is a proper distribution (its

probability mass function sums to one); (2) uniform means that all elements in its support have the

same mass; (3) the support of the distribution is the set of all valid passwords (validPassword checks

if passwords have their length belongs in the interval [1,200] and if all their characters belong to one of

the four character sets). This distribution can be used to construct the IdealRPG module that meets the

requirements for our RPG security definition.

module IdealRPG = {

proc generate_password(policy:policy) = {

var pw;

var out;

if(satisfiablePolicy policy) {

pw <$ dpassword \ doesNotSatisfyPolicy policy;

out <- Some pw;

} else {

out <- None;

}

return out;

}

}.

Figure 4.4: Ideal RPG (EasyCrypt)

In this module, a password is sampled if the policy is satisfiable, otherwise outputs None. The

sampling makes use of the axiomatized distribution over passwords, restricting its support by removing
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the passwords that do not satisfy the policy. Given these definitions, we can write the lemma that we

need to prove to consider our RPG secure:

lemma rpg_security :

equiv [IdealRPG.generate_password ~ RPGRef.generate_password :

={policy} ==> ={res}].

This is a pRHL judgement which means that for all memories &m1 and &m2 (sets of variables of

IdealRPG and RPGRef, respectively) if ={policy} holds (the input policy, has the same value in both

memories), then the distribution on memories d&m1’ and d&m2’, obtained by running the respective

methods from the initial memory, satisfy ={res} (res, the output value, has the same mass in both dis-

tributions). If we prove this lemma for our RPG reference implementation, we prove that these methods

produce the same distributions over their output, hence establishing security of the RPG reference im-

plementation.

4.2.2 Proof Sketch

To prove the security lemma stated above, we need to establish that the induced distribution from the ex-

ecution of RPGRef.generate_password is uniform among all passwords satisfying the policy. It requires

fairly detailed reasoning on the distribution level in EasyCrypt. Here, we present a proof sketch. The

general structure of the argument follows the structure of Algorithm 1: (1) It starts by generating a pass-

word that satisfies the length and the different set bounds defined in the policy, placing them at specific

positions; (2) It randomly shuffles the password. The result follows from arguing that the combination

of characters after step (1) are sampled according to a uniform distribution, and that the final shuffle

allows to reach, with the same probability, any possible password satisfying the policy. In the course of

the formalisation of the above points, auxiliary results such as the correctness of the well-known prob-

abilistic algorithm of rejection sampling for the RNG, and the Fisher-Yates shuffle algorithm (procedure

Permutation) have to be tackled.

4.3 Jasmin Implementation Verification

In this section we prove how the Jasmin code modelled in EasyCrypt, as described in Section 3.4, also

satisfies the properties of our reference implementation. To do so, we first need to prove that the Jasmin

RPG modelled in EasyCrypt and the reference implementation are equivalent, and then we can prove

that the Jasmin code also satisfies both the correctness experiment and the security game.
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4.3.1 Equivalence between Jasmin and Reference Implementation

As shown in Section 3, these implementations are very identical, so this proof is somewhat straightfor-

ward. One needs to prove the equivalence between the corresponding sub-procedures of each module,

so we can prove that the main generate_password methods are equivalent. What make this proof not

as trivial as it might seem is the fact that in the reference implementation types are modelled using in-

tegers, while in Jasmin everything is modelled as 64-bit or 8-bit words. So, during the proofs one must

take into account, for example, some upper and lower bounds on arithmetic operations on integers that

are represented as bit words, to avoid over and underflows.

In order to make the lemma more readable and easy to reason about, we decided to implement a

module of type RPG_T which is parameterized by our Jasmin implementation that serves as a “bridge” be-

tween the reference implementation world and the Jasmin world. We call that module ConcreteScheme.

Concrete Scheme. Ideally, this module is the simplest program that makes use of our implemen-

tation to generate passwords. Since our Jasmin implementation does not receive as input a policy,

ConcreteScheme just transforms policies specified in EasyCrypt and writes them in memory and, after

the RPG generates a password, extracts it from memory and transforms it into the type password. This

module chooses two arbitrary memory positions for the RPG input (the policy address and the outputted

password address). One must just be careful to not overlap this positions (i.e., leave enough memory

positions to write a policy). In Figure 4.5 we show the generate_password method of this module, and

the full module is shown in Appendix A and can also be found online2.

proc generate_password(policy:policy) : password option = {

var policyAddr, pwdAddr, output : W64.t;

var pwd : password;

var pwdOpt : password option;

policyAddr <- W64.of_int 0;

pwdAddr <- W64.of_int 1000;

policySpecToMem(policy, Glob.mem, policyAddr);

output <- M.generate_password(policyAddr, pwdAddr);

if (output \slt W64.zero) {

pwdOpt <- None;

} else {

pwd <- pwdMemToSpec(policy.`length, Glob.mem, pwdAddr);

pwdOpt <- Some pwd;

}

return pwdOpt;

}

Figure 4.5: Main method of ConcreteScheme which calls our Jasmin implementation, and makes the necessary
transformations from the reference implementation types to the Jasmin model types, and vice-versa.

2https://github.com/passcert-project/random-password-generator/blob/main/EC/passCertRPG_jazz_proof.ec
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So, we can easily write the lemma that states that both modules are equivalent, using probabilistic

relational Hoare logic (pRHL):

lemma implementation_reference_equiv :

equiv [ConcreteScheme.generate_password ~ RPGRef.generate_password :

={policy} /\ policyFitsW64 policy{2} ==> ={res}]

It states that running the ConcreteScheme and the reference implementation with the same input

policy, with the assumption that each field of the policy fits in 64 bits, results in the same output in both

programs (the distribution on the possible values for res is the same).

To prove this lemma, we need to prove that if the the policy is satisfiable, the respective distributions

on the possible passwords that can be generated are the same. On the other hand, if the policy is

unsatisfiable, one must prove that both programs output None.

The second part of the proof is simple. The reference implementation always outputs None when it

receives an unsatisfiable policy (as shown in Section 4.1.2), and the ConcreteScheme outputs None if the

Jasmin implementation outputs a negative value. So, one needs to check if indeed the Jasmin outputs

a negative value whenever it receives an unsatisfiable true, which is easy to verify.

The challenge arises when proving, for satisfiable policies, that the distribution of the Jasmin imple-

mentation output mapped into a password is the same as the reference implementation.

To prove this property, operands that express equality between the types from one module to the

other were naturally defined as such:

op EqWordChar word char = W8.to_uint word = char.

op EqWordInt word int = W64.to_uint word = int.

op EqWordIntSet (memSet:W8.t Array76.t) (specSet:charSet) =

forall n, n \in range 0 (size specSet) => EqWordChar memSet.[n] (nth (-1) specSet n).

The first two operands express equality between words written in 8 or 64 bits and integers (to_uint

converts words to integers), and EqWordIntSet expresses equality between word arrays from the Jasmin

model and character sets written in EasyCrypt. In the latter definition we say that for all entries of

memSet from 0 to the size of specSet, the words that is stored in each entry and the characters stored

in respective entries on specSet are equal. We need to define this equality as such because in Jasmin

union_set has a constant size of 76, and is filled with zeros in case we are not using it entirely.

Using this simple definitions, we can write the lemmas that formalize the equivalence between the

corresponding sub-procedures of each module.

RNG. The property that states that the RNG is equivalent in Jasmin and the reference implementation

is formalized with the following lemma:
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lemma imp_ref_rng_equiv _range :

equiv[M.rng ~ RPGRef.rng : range{2} = _range /\

EqWordInt range{1} range{2} /\

0 < to_uint range{1} < W64.modulus

==>

EqWordInt res{1} res{2} /\

0 <= res{2} < _range].

It states that running both RNGs (M is our Jasmin RPG) for the same input range, assuming it belongs

to the interval ]0, 264 − 1] (which will always happen when calling the RNGs in our implementations),

results in the same output in both programs (the distribution on the possible values for res is the same).

Random Char Generator. The property that states that the random char generators are equivalent in

Jasmin and the reference implementation is formalized with the following lemma:
lemma imp_ref_rcg_equiv :

equiv[M.random_char_generator ~ RPGRef.random_char_generator :

EqWordIntSet set{1} set{2} /\

EqWordInt range{1} (size set{2}) /\

0 < to_uint range{1} < W64.modulus

==>

EqWordChar res{1} res{2}].

It states that running both random character generators for the same input set, results in the same

output in both programs (the distribution on the possible values for res is the same).

Random Char Generator. Finally, the property that states that the methods that define the union of

sets are equivalent in Jasmin and the reference implementation is formalized with the following lemma:
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lemma imp_ref_define_union_set_equiv :

equiv[M.define_union_set ~ RPGRef.define_union_set :

EqWordInt lowercase_max{1} nLowercase{2} /\

EqWordInt uppercase_max{1} nUppercase{2} /\

EqWordInt numbers_max{1} nNumbers{2} /\

EqWordInt special_max{1} nSpecial{2} /\

EqWordIntSet lowercase_set{1} lowercaseSet{2} /\

EqWordIntSet uppercase_set{1} uppercaseSet{2} /\

EqWordIntSet numbers_set{1} numbersSet{2} /\

EqWordIntSet special_set{1} specialSet{2} /\

size lowercaseSet{2} = 26 /\

size uppercaseSet{2} = 26 /\

size numbersSet{2} = 10 /\

size specialSet{2} = 14

==>

to_uint res{1}.`1 = size res{2} /\

EqWordIntSet res{1}.`2 res{2}

].

It states that running both methods that define the union of sets assuming that all four sets are equal

and that the available number of characters that we can sample from each set are equal (which will

always happen when calling these methods in our implementations), results in the same output in both

programs (the distribution on the possible values for res is the same).

The proof to these lemmas can be found online3.

After proving all these equivalences, it is easy to prove that on satisfiable policies, both modules

produce the same output. So, we prove the lemma that states equivalence between the Jasmin RPG

and the reference implementation, implementation_reference_equiv.

4.3.2 Correctness and Security of the Jasmin Implementation

To prove that our Jasmin implementation is functionally correct and secure, we can subject it to the cor-

rectness experiment and the security game, respectively. Since this experiment is expected to receive a

module of type RPG_T which receives inputs of type policy and returns values of type password option,

we can use the ConcreteScheme. These properties are formalized with the following lemmas:

3https://github.com/passcert-project/random-password-generator/blob/main/EC/passCertRPG_jazz_proof.ec
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lemma concrete_rpg_correctness &m policy :

policyFitsW64 policy =>

Pr[Correctness(ConcreteScheme).main(policy) @ &m : res] = 1%r.

and

lemma concrete_rpg_security :

policyFitsW64 policy =>

equiv [IdealRPG.generate_password ~ ConcreteScheme.generate_password :

={policy} ==> ={res}].

Having the equivalence between the reference implementation and the ConcreteScheme module

proved and having proved that the reference implementation satisfies these two properties, these two

lemmas are trivial to prove. The argument is that we can replace the ConcreteScheme by the reference

implementation, since they are interchangeable, and then we apply the lemmas where the functional

correctness and security of the reference implementation are proved.
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In this chapter we show how our Jasmin implementation can be integrated with one of the studied

password managers: Bitwarden. This integration is a proof-of-concept of our solution and it is also

used to evaluate the performance of our solution, by comparing the performance of Bitwarden using its

original RPG and ours, in order to address if having a formally verified implementation of an RPG comes

with a performance penalty.

5.1 Integration with Bitwarden

Bitwarden has different applications where one can run their services: a browser extension, a desktop

application for different operating systems, a mobile application and a command line interface (CLI).

As proof-of-concept, we integrate our solution with the CLI application1, because our RPG is written

in Jasmin (then compiled to assembly), so it is easier to integrate with an application that runs on a

terminal. Moreover, it simplifies the process of running the performance tests.

To integrate, we adapted a library from Bitwarden named jslib, which encapsulates all the methods

that are shared between the organization’s different applications, including the random password gener-

ator algorithm. This library is written in TypeScript so, in order to adapt the jslib to run our code, we use

NodeJS child-process module to spawn a shell which executes the command that runs our implementa-

tion. With this binding, we are able to successfully run a Bitwarden CLI application that uses our Jasmin

implementation when asked to generate a random password.

5.2 Performance

We evaluate the performance of our implementation by comparing Bitwarden CLI running with its original

RPG to it running with out RPG (using the implementation described in the previous section). To do so,

we measure the time that it takes to perform the generation of a password for both solutions for 4 different

policies. Out of these 4 policies, 3 of them are policies proposed by Shay et al [19] that were shown

to be secure – 2class12, 3class12, and 2class16. These policies vary on the length (12 and 16) and

the number of used classes (2 and 3). We also used a policy named PIN which are the passwords

composed of 4 numbers, in order to see if reducing the complexity of the policy had a significant impact

on the performance.

Environment All measurements were performed on an Intel i7-8750H processor clocked at 2,20GHz,

running Ubuntu 20.04.3 LTS, kernel release 5.11.0-38-generic.

1https://github.com/bitwarden/cli
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Results Figure 5.1 shows the results. We sampled 200 password for both generators for each policy,

and we made an average of the time taken to sample each password, which is presented in milliseconds.

Policy

2class163class122class12PIN
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Jasmin
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Figure 5.1: Comparison of Bitwarden CLI using its own RPG and Bitwarden CLI using our RPG implemented in
Jasmin.

The results show that the Bitwarden original RPG is slightly more efficient compared to ours. How-

ever, if we think in absolute values, the generation process of our implementation takes essentially the

same time, mostly because we are comparing times that are of a really small order of magnitude. Also,

one must take into account the overhead of binding our Jasmin implementation with the TypeScript of

Bitwarden, which suggests that, without this overhead, our implementation would be even more similar

to Bitwarden’s.

Moreover, this process is not expected to be used many times, compared to, for example, an algo-

rithm of a symmetric cipher that might be used in a protocol multiple times. So, in practice, the results

show that our implementation is feasible and that it works as efficiently as a state-of-the-art implemen-

tation.

It is also possible to see that, the complexity of the policies did not have much impact on the perfor-

mance, at least for these policies which do not sample very big passwords, but are some of the most

commonly used.
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Finally, in this chapter we will present the main conclusions of our work, and discuss some of the

limitations of it and the future steps to be done.

6.1 Conclusions

In this work we proposed solution that partially solves the issue of users not trusting password managers,

which focuses on the process of generating random passwords.

Keeping in mind the problem to be solved, we propose reference implementation of an RPG that,

given a password composition policy, is assured to generate passwords compliant with the policy, and

we formalize the property that the generator samples the set of passwords according to a uniform distri-

bution.

In addition, we realized this reference implementation with a concrete one written in Jasmin. We

proved the equivalence between this module and the reference implementation, which all add up to a

formally verified concrete implementation that can be integrated into any password manager.

6.2 System Limitations and Future Work

The next natural step to be done after this work, is to prove with EasyCrypt the security property for the

reference implementation, following the proposed structure on Section 4.2.2.

Another relevant property that could be proved about our RPG is side-channel protection. This is a

commonly proved property for cryptographic constructions, that would make our solution more robust.

To prove such property, one has to prove that the RPG is constant-time (i.e., regardless of the input,

the time complexity of the algorithm is the same). The effort needed to implement this would essentially

amount to make constant lookups to the arrays when getting characters from the sets. The Jasmin

framework provides a method that supports these proofs (sometimes automatically) which can also be

explored.

We found two major limitations on our work: the first one is the assumption on the underlying random

bytes generator. It would be interesting to make the security proof without assuming that the random

bytes generator is secure. To do so one needs to prove that the random bytes generator is indistinguish-

able from the Ideal RPG constructed in Section 4.2 for a certain class of constrained attackers, where

one could argue that, in practice, the random bytes generator samples bytes uniformly at random. If

one is able to prove side-channel protection and prove security without this assumption, the final result

would be a really robust RPG.

The other limitation is that we have fixed the four sets from which characters can be sampled. It

would be an interesting feature to extend the generator with the possibility of using arbitrary characters
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set, which would allow for more flexibility on generating passwords, thus increasing compliance with

different password rules and offering more usability to the user.
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[32] G. Barthe, B. Grégoire, and S. Zanella Béguelin, “Formal certification of code-based cryptographic

proofs,” in Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, 2009, pp. 90–101.

[33] V. Shoup, “Sequences of games: a tool for taming complexity in security proofs.” IACR Cryptol.

ePrint Arch., vol. 2004, p. 332, 2004.

[34] M. Bellare and P. Rogaway, “Code-based game-playing proofs and the security of triple encryption.”

IACR Cryptol. ePrint Arch., vol. 2004, p. 331, 2004.

43

https://cr.yp.to/qhasm.html
https://coq.inria.fr/


A
Reference Implementation

Reference Implementation written in EasyCrypt:

proc generate_password(policy:policy) : password option = {

var outputPassword : password option;

var generatedPassword : password;

var unionSet : charSet;

var randomChar : char;

var i : int;

var lowercaseAvailable, uppercaseAvailable, numbersAvailable, specialAvailable : int;

(* if policy is satisfiable, return Some password *)

if(satisfiablePolicy policy) {

lowercaseSet <@ get_lowercaseSet();

uppercaseSet <@ get_uppercaseSet();

numbersSet <@ get_numbersSet();

specialSet <@ get_specialSet();

generatedPassword <- [];

lowercaseAvailable <- policy.`lowercaseMax;

uppercaseAvailable <- policy.`uppercaseMax;

numbersAvailable <- policy.`numbersMax;
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specialAvailable <- policy.`specialMax;

(* generate characters with min values defined *)

if (0 < lowercaseAvailable) {

i <- 0;

while (i < policy.`lowercaseMin) {

lowercaseAvailable <- lowercaseAvailable - 1;

randomChar <@ random_char_generator(lowercaseSet);

generatedPassword <- generatedPassword ++ [randomChar];

i <- i + 1;

}

}

if (0 < uppercaseAvailable) {

i <- 0;

while (i < policy.`uppercaseMin) {

uppercaseAvailable <- uppercaseAvailable - 1;

randomChar <@ random_char_generator(uppercaseSet);

generatedPassword <- generatedPassword ++ [randomChar];

i <- i + 1;

}

}

if (0 < numbersAvailable) {

i <- 0;

while (i < policy.`numbersMin) {

numbersAvailable <- numbersAvailable - 1;

randomChar <@ random_char_generator(numbersSet);

generatedPassword <- generatedPassword ++ [randomChar];

i <- i + 1;

}

}

if (0 < specialAvailable) {

i <- 0;

while (i < policy.`specialMin) {

specialAvailable <- specialAvailable - 1;

randomChar <@ random_char_generator(specialSet);

generatedPassword <- generatedPassword ++ [randomChar];

i <- i + 1;

}

}

(* generate characters from the available sets of characters *)

unionSet <@ define_union_set(lowercaseAvailable, uppercaseAvailable, numbersAvailable,

specialAvailable, lowercaseSet, uppercaseSet, numbersSet, specialSet);

while (size generatedPassword < policy.`length) {

randomChar <@ random_char_generator(unionSet);

if (randomChar \in lowercaseSet) {

lowercaseAvailable <- lowercaseAvailable - 1;
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if (lowercaseAvailable = 0) {

unionSet <@ define_union_set(lowercaseAvailable, uppercaseAvailable, numbersAvailable,

specialAvailable, lowercaseSet, uppercaseSet, numbersSet,

specialSet);

}

}

elif (randomChar \in uppercaseSet) {

uppercaseAvailable <- uppercaseAvailable - 1;

if (uppercaseAvailable = 0) {

unionSet <@ define_union_set(lowercaseAvailable, uppercaseAvailable, numbersAvailable,

specialAvailable, lowercaseSet, uppercaseSet, numbersSet,

specialSet);

}

}

elif (randomChar \in numbersSet) {

numbersAvailable <- numbersAvailable - 1;

if (numbersAvailable = 0) {

unionSet <@ define_union_set(lowercaseAvailable, uppercaseAvailable, numbersAvailable,

specialAvailable, lowercaseSet, uppercaseSet, numbersSet,

specialSet);

}

}

elif (randomChar \in specialSet) {

specialAvailable <- specialAvailable - 1;

if (specialAvailable = 0) {

unionSet <@ define_union_set(lowercaseAvailable, uppercaseAvailable, numbersAvailable,

specialAvailable, lowercaseSet, uppercaseSet, numbersSet,

specialSet);

}

}

generatedPassword <- generatedPassword ++ [randomChar];

}

generatedPassword <@ permutation(generatedPassword);

outputPassword <- Some generatedPassword;

}

(* If policy is unsatisfiable, return None *)

else {

outputPassword <- None;

}

return outputPassword;

}
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Reference Implementation’s Random Char Generator:

proc random_char_generator(set:charSet) : char = {

var char : char;

var choice : int;

choice <@ rng(size set);

char <- nth (-1) set choice;

return (char);

}

Reference Implementation’s String Permutation:

proc permutation(pw:password) : password = {

var i : int;

var j : int;

var aux : char;

i <- size pw;

while (0 < i) {

j <@ rng(i);

i <- i - 1;

aux <- nth 0 pw i;

pw <- update (nth 0 pw j) pw i;

pw <- update aux pw j;

}

return pw;

}

Reference Implementation’s Random Number Generator:

proc rng(range:int) : int = {

var value, maxValue, modValue : int;

(* check how much we should remove from 2^64 - 1 in order to get a multiple of range *)

modValue <- (2^64 - 1) %% range;

(* if the mod is range - 1, it means we can sample from 2^64 - 1 and have an uniform distribution *)

if(modValue = range - 1) {

maxValue <- (2^64 - 1);

(* else, we need to remove the unnecessary values*)

} else {

maxValue <- (2^64 - 1) - modValue - 1;

}

value <$ [0 .. (2^64 - 1)];

while (maxValue < value) {

value <$ [0 .. (2^64 - 1)]; (* Random Bytes Generator *)

}
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value <- value %% range;

return value;

}

Reference Implementation’s Define Union Set:

proc define_union_set(nLowercase:int, nUppercase:int, nNumbers:int, nSpecial:int,

lowercaseSet:charSet, uppercaseSet:charSet,

numbersSet:charSet, specialSet:charSet) : charSet = {

var unionSet, set : charSet;

unionSet <- [];

if (0 < nLowercase) {

set <- lowercaseSet;

unionSet <- unionSet ++ set;

}

if (0 < nUppercase) {

set <- uppercaseSet;

unionSet <- unionSet ++ set;

}

if (0 < nNumbers) {

set <- numbersSet;

unionSet <- unionSet ++ set;

}

if (0 < nSpecial) {

set <- specialSet;

unionSet <- unionSet ++ set;

}

return unionSet;

}

Concrete Scheme (Program used to prove equivalence between the reference implementation

and the Jasmin implementation):

module ConcreteScheme : RPG_T = {

proc policySpecToMem(policy:policy, mem:global_mem_t, addr:W64.t) : global_mem_t = {

mem <- storeW64 mem (W64.to_uint addr + 0) (W64.of_int policy.`length);

mem <- storeW64 mem (W64.to_uint addr + 8) (W64.of_int policy.`lowercaseMin);

mem <- storeW64 mem (W64.to_uint addr + 16) (W64.of_int policy.`lowercaseMax);

mem <- storeW64 mem (W64.to_uint addr + 24) (W64.of_int policy.`uppercaseMin);

mem <- storeW64 mem (W64.to_uint addr + 32) (W64.of_int policy.`uppercaseMax);

mem <- storeW64 mem (W64.to_uint addr + 40) (W64.of_int policy.`numbersMin);

mem <- storeW64 mem (W64.to_uint addr + 48) (W64.of_int policy.`numbersMax);

mem <- storeW64 mem (W64.to_uint addr + 56) (W64.of_int policy.`specialMin);

mem <- storeW64 mem (W64.to_uint addr + 64) (W64.of_int policy.`specialMax);

return mem;
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}

proc pwdMemToSpec(length:int, mem:global_mem_t, addr:W64.t) : password = {

var pwd;

var i;

pwd <- [];

i <- 0;

while(i < length) {

pwd <- pwd ++ [W8.to_uint (loadW8 mem (W64.to_uint addr + i))];

}

return pwd;

}

proc generate_password(policy:policy) : password option = {

var policyAddr, pwdAddr : W64.t;

var output : W64.t;

var pwd : password;

var pwdOpt : password option;

(* arbitrary memory location for policy and output password *)

policyAddr <- W64.of_int 0;

pwdAddr <- W64.of_int 1000;

policySpecToMem(policy, Glob.mem, policyAddr);

output <- M.generate_password(policyAddr, pwdAddr);

if (output \slt W64.zero) {

pwdOpt <- None;

} else {

pwd <- pwdMemToSpec(policy.`length, Glob.mem, pwdAddr);

pwdOpt <- Some pwd;

}

return pwdOpt;

}

}.
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B
Jasmin

Jasmin Implementation:

inline fn rng(reg u64 range) -> reg u64 {

reg u64 max_value, tmp1, tmp2, tmp_range;

tmp1 = 18446744073709551615; // 2^64 -1

tmp2 = 18446744073709551615;

tmp_range = range;

tmp1 = tmp1 % tmp_range;

tmp_range -= 1;

if(tmp1 == tmp_range) {

max_value = tmp2;

} else {

max_value = tmp2 - tmp1;

max_value -= 1;

}

tmp2 = #RDRAND();

while(max_value < tmp2) {

tmp2 = #RDRAND();

}
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tmp1 = tmp2;

tmp_range += 1;

tmp1 = tmp1 % tmp_range;

return tmp1;

}

inline fn random_char_generator(reg u64 range, stack u8[76] set) -> reg u8 {

reg u8 char;

reg u64 choice;

choice = rng(range);

char = set[(int)choice];

return char;

}

inline fn permutation(reg u64 p_string, reg u64 string_len) {

reg u64 i, j;

reg u8 aux;

i = string_len;

while (i > 0) {

j = rng(i);

i = i - 1;

aux = (u8) [p_string + i];

(u8) [p_string + i] = (u8) [p_string + j];

(u8) [p_string + j] = aux;

}

}

inline fn define_union_set(reg u64 lowercase_max, reg u64 uppercase_max, reg u64 numbers_max, reg u64 special_max, stack u8[76] lowercase_set,

stack u8[76] uppercase_set, stack u8[76] numbers_set, stack u8[76] special_set, stack u8[76] union_set) -> reg u64, stack u8[76] {

reg u8 tmp;

reg u64 i, i_set;

i_set = 0;

if (lowercase_max > 0) {

// i = 0;

// while (i < 26) {

// tmp = lowercase_set[(int)i];

// union_set[(int)i_set] = tmp;

// i += 1;

// i_set += 1;

// }

tmp = lowercase_set[0];

union_set[i_set + 0] = tmp;

tmp = lowercase_set[1];
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union_set[i_set + 1] = tmp;

tmp = lowercase_set[2];

union_set[i_set + 2] = tmp;

tmp = lowercase_set[3];

union_set[i_set + 3] = tmp;

tmp = lowercase_set[4];

union_set[i_set + 4] = tmp;

tmp = lowercase_set[5];

union_set[i_set + 5] = tmp;

tmp = lowercase_set[6];

union_set[i_set + 6] = tmp;

tmp = lowercase_set[7];

union_set[i_set + 7] = tmp;

tmp = lowercase_set[8];

union_set[i_set + 8] = tmp;

tmp = lowercase_set[9];

union_set[i_set + 9] = tmp;

tmp = lowercase_set[10];

union_set[i_set + 10] = tmp;

tmp = lowercase_set[11];

union_set[i_set + 11] = tmp;

tmp = lowercase_set[12];

union_set[i_set + 12] = tmp;

tmp = lowercase_set[13];

union_set[i_set + 13] = tmp;

tmp = lowercase_set[14];

union_set[i_set + 14] = tmp;

tmp = lowercase_set[15];

union_set[i_set + 15] = tmp;

tmp = lowercase_set[16];

union_set[i_set + 16] = tmp;

tmp = lowercase_set[17];

union_set[i_set + 17] = tmp;

tmp = lowercase_set[18];

union_set[i_set + 18] = tmp;

tmp = lowercase_set[19];

union_set[i_set + 19] = tmp;

tmp = lowercase_set[20];

union_set[i_set + 20] = tmp;

tmp = lowercase_set[21];

union_set[i_set + 21] = tmp;

tmp = lowercase_set[22];

union_set[i_set + 22] = tmp;

tmp = lowercase_set[23];

union_set[i_set + 23] = tmp;
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tmp = lowercase_set[24];

union_set[i_set + 24] = tmp;

tmp = lowercase_set[25];

union_set[i_set + 25] = tmp;

i_set += 26;

}

if (uppercase_max > 0) {

i = 0;

while (i < 26) {

tmp = uppercase_set[(int)i];

union_set[(int)i_set] = tmp;

i += 1;

i_set += 1;

}

}

if (numbers_max > 0) {

i = 0;

while (i < 10) {

tmp = numbers_set[(int)i];

union_set[(int)i_set] = tmp;

i += 1;

i_set += 1;

}

}

if (special_max > 0) {

i = 0;

while (i < 14) {

tmp = special_set[(int)i];

union_set[(int)i_set] = tmp;

i += 1;

i_set += 1;

}

}

return i_set, union_set;

}

export fn generate_password(reg u64 policy_addr, reg u64 output_addr) -> reg u64 {

// General purpose registers

reg u8 tmp8;

reg u64 tmp64_1, tmp64_2;

// Registers used for iterations

reg u64 i, i_set, i_filled;

// Stack arrays that store the different char sets

stack u8[76] lowercase_set;

stack u8[76] uppercase_set;
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stack u8[76] numbers_set;

stack u8[76] special_set;

stack u8[76] union_set;

// Variables that stor min and max values of characters to be generated

stack u64 length, lowercase_min, uppercase_min, numbers_min, special_min, lowercase_max, uppercase_max, numbers_max, special_max;

// Output

reg u64 output;

///////////////////////////////// Sets of characters ////////////////////////////////////

// //

// Lowercase: {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z} //

// Uppercase: {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z} //

// Numbers: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} //

// Special Characters: {!, ?, #, $, %, &, +, -, *, _, @, :, ;, =} //

// //

//////////////////////////////////////////////////////////////////////////////////////////////////

// Get values from the policy

length = [policy_addr + 0];

lowercase_min = [policy_addr + 8];

lowercase_max = [policy_addr + 16];

uppercase_min = [policy_addr + 24];

uppercase_max = [policy_addr + 32];

numbers_min = [policy_addr + 40];

numbers_max = [policy_addr + 48];

special_min = [policy_addr + 56];

special_max = [policy_addr + 64];

/////////////////////////

// INPUT VERIFICATIONS //

/////////////////////////

// Length does not exceed maximum length of 200

tmp64_1 = length;

if (tmp64_1 <= 200) {

// Length is greater than zero

if (tmp64_1 > 0) {

// Min values are not negative

tmp64_1 = lowercase_min;

if (tmp64_1 >= 0) {

tmp64_1 = uppercase_min;

if (tmp64_1 >= 0) {

tmp64_1 = numbers_min;

if (tmp64_1 >= 0) {

tmp64_1 = special_min;

if (tmp64_1 >= 0) {

// Max values do not exceed 200 (theoretically this is useless, but we need this in the implementation to avoid overflow)

tmp64_1 = lowercase_max;
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if (tmp64_1 <= 200) {

tmp64_1 = uppercase_max;

if (tmp64_1 <= 200) {

tmp64_1 = numbers_max;

if (tmp64_1 <= 200) {

tmp64_1 = special_max;

if (tmp64_1 <= 200) {

// Max values are greater or equal to min values

tmp64_1 = lowercase_max;

tmp64_2 = lowercase_min;

if (tmp64_1 >= tmp64_2) {

tmp64_1 = uppercase_max;

tmp64_2 = uppercase_min;

if (tmp64_1 >= tmp64_2) {

tmp64_1 = numbers_max;

tmp64_2 = numbers_min;

if (tmp64_1 >= tmp64_2) {

tmp64_1 = special_max;

tmp64_2 = special_min;

if (tmp64_1 >= tmp64_2) {

// Sum of minimum values do not exceed password length

tmp64_1 = lowercase_min;

tmp64_2 = uppercase_min;

tmp64_1 += tmp64_2;

tmp64_2 = numbers_min;

tmp64_1 += tmp64_2;

tmp64_2 = special_min;

tmp64_1 += tmp64_2;

if (tmp64_1 <= length) {

// Sum of maximum values satisfies the password length

tmp64_1 = lowercase_max;

tmp64_2 = uppercase_max;

tmp64_1 += tmp64_2;

tmp64_2 = numbers_max;

tmp64_1 += tmp64_2;

tmp64_2 = special_max;

tmp64_1 += tmp64_2;

if (tmp64_1 >= length) {

////////////////////////////////

// READY TO GENERATE PASSWORD //

////////////////////////////////

// Initialize the sets. The values are the ASCII codes of the different characters

lowercase_set[0] = 97;

lowercase_set[1] = 98;
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lowercase_set[2] = 99;

lowercase_set[3] = 100;

lowercase_set[4] = 101;

lowercase_set[5] = 102;

lowercase_set[6] = 103;

lowercase_set[7] = 104;

lowercase_set[8] = 105;

lowercase_set[9] = 106;

lowercase_set[10] = 107;

lowercase_set[11] = 108;

lowercase_set[12] = 109;

lowercase_set[13] = 110;

lowercase_set[14] = 111;

lowercase_set[15] = 112;

lowercase_set[16] = 113;

lowercase_set[17] = 114;

lowercase_set[18] = 115;

lowercase_set[19] = 116;

lowercase_set[20] = 117;

lowercase_set[21] = 118;

lowercase_set[22] = 119;

lowercase_set[23] = 120;

lowercase_set[24] = 121;

lowercase_set[25] = 122;

i = 26;

while (i < (76)) {

lowercase_set[(int)i] = 0;

i += 1;

}

uppercase_set[0] = 65;

uppercase_set[1] = 66;

uppercase_set[2] = 67;

uppercase_set[3] = 68;

uppercase_set[4] = 69;

uppercase_set[5] = 70;

uppercase_set[6] = 71;

uppercase_set[7] = 72;

uppercase_set[8] = 73;

uppercase_set[9] = 74;

uppercase_set[10] = 75;

uppercase_set[11] = 76;

uppercase_set[12] = 77;

uppercase_set[13] = 78;

uppercase_set[14] = 79;

uppercase_set[15] = 80;
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uppercase_set[16] = 81;

uppercase_set[17] = 82;

uppercase_set[18] = 83;

uppercase_set[19] = 84;

uppercase_set[20] = 85;

uppercase_set[21] = 86;

uppercase_set[22] = 87;

uppercase_set[23] = 88;

uppercase_set[24] = 89;

uppercase_set[25] = 90;

i = 26;

while (i < (76)) {

uppercase_set[(int)i] = 0;

i += 1;

}

numbers_set[0] = 48;

numbers_set[1] = 49;

numbers_set[2] = 50;

numbers_set[3] = 51;

numbers_set[4] = 52;

numbers_set[5] = 53;

numbers_set[6] = 54;

numbers_set[7] = 55;

numbers_set[8] = 56;

numbers_set[9] = 57;

i = 10;

while (i < (76)) { // Maybe remove this whiles

numbers_set[(int)i] = 0;

i += 1;

}

special_set[0] = 33;

special_set[1] = 63;

special_set[2] = 35;

special_set[3] = 36;

special_set[4] = 37;

special_set[5] = 38;

special_set[6] = 43;

special_set[7] = 45;

special_set[8] = 42;

special_set[9] = 95;

special_set[10] = 64;

special_set[11] = 58;

special_set[12] = 59;

special_set[13] = 61;

i = 14;
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while (i < (76)) {

special_set[(int)i] = 0;

i += 1;

}

// Initialize union set

i = 0;

while (i < (76)) {

union_set[(int)i] = 0;

i += 1;

}

// Generate characters with min values defined

i_filled = 0;

if (lowercase_max > 0) {

i = 0;

while (i < lowercase_min) {

lowercase_max -= 1;

tmp8 = random_char_generator(26, lowercase_set);

(u8) [output_addr + i_filled] = tmp8;

i += 1;

i_filled += 1;

}

}

if (uppercase_max > 0) {

i = 0;

while (i < uppercase_min) {

uppercase_max -= 1;

tmp8 = random_char_generator(26, uppercase_set);

(u8) [output_addr + i_filled] = tmp8;

i += 1;

i_filled += 1;

}

}

if (numbers_max > 0) {

i = 0;

while (i < numbers_min) {

numbers_max -= 1;

tmp8 = random_char_generator(10, numbers_set);

(u8) [output_addr + i_filled] = tmp8;

i += 1;

i_filled += 1;

}

}

if (special_max > 0) {

i = 0;

while (i < special_min) {
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special_max -= 1;

tmp8 = random_char_generator(14, special_set);

(u8) [output_addr + i_filled] = tmp8;

i += 1;

i_filled += 1;

}

}

// Define set of available characters, if their maximum value has not been reached yet

tmp64_1, union_set = define_union_set(lowercase_max, uppercase_max, numbers_max, special_max,

lowercase_set, uppercase_set, numbers_set, special_set, union_set);

// Generate password from the set of available characters

tmp64_2 = length;

while (i_filled < tmp64_2) {

tmp8 = random_char_generator(tmp64_1, union_set);

if (tmp8 >= 97) { if (tmp8 <= 122) {

lowercase_max -= 1;

if (lowercase_max == 0) {

tmp64_1, union_set = define_union_set(lowercase_max, uppercase_max, numbers_max, special_max,

lowercase_set, uppercase_set, numbers_set, special_set, union_set);

}

}} else { if (tmp8 >= 65) { if (tmp8 <= 90) {

uppercase_max -= 1;

if (uppercase_max == 0) {

tmp64_1, union_set = define_union_set(lowercase_max, uppercase_max, numbers_max, special_max,

lowercase_set, uppercase_set, numbers_set, special_set, union_set);

}

}} else { if (tmp8 >= 48) { if (tmp8 <= 57) {

numbers_max -= 1;

if (numbers_max == 0) {

tmp64_1, union_set = define_union_set(lowercase_max, uppercase_max, numbers_max, special_max,

lowercase_set, uppercase_set, numbers_set, special_set, union_set);

}

}} else {

special_max -= 1;

if (special_max == 0) {

tmp64_1, union_set = define_union_set(lowercase_max, uppercase_max, numbers_max, special_max,

lowercase_set, uppercase_set, numbers_set, special_set, union_set);

}

}

}

}

(u8) [output_addr + i_filled] = tmp8;

i_filled += 1;

}
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// Generate random permutation of string

tmp64_1 = length;

permutation(output_addr, tmp64_1);

// Make sure last character is \0

[output_addr + tmp64_1] = 0;

output = 1;

} else {

// Maximum values are short (Sum(Max) < length)

output = -16;

}

} else {

// Minimum values are larger than length (Sum(Min) > length)

output = -15;

}

} else {

// Special characters max value is smaller than min value

output = -14;

}

} else {

// Numbers max value is smaller than min value

output = -13;

}

} else {

// Uppercase letters max value is smaller than min value

output = -12;

}

} else {

// Lowercase letters max value is smaller than min value

output = -11;

}

} else {

// Special characters max value is greater than 200

output = -10;

}

} else {

// Numbers max value is greater than 200

output = -9;

}

} else {

// Uppercase letters max value is greater than 200

output = -8;

}

} else {

// Lowercase letters max value is greater than 200

output = -7;
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}

} else {

// Special characters min value is negative

output = -6;

}

} else {

// Numbers min value is negative

output = -5;

}

} else {

// Uppercase letters min value is negative

output = -4;

}

} else {

// Lowercase letters min value is negative

output = -3;

}

} else {

// Length is negative

output = -2;

}

} else {

// Length is too large (length > 200)

output = -1;

}

return output;

}
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