
Persistence of Passwords in Bitwarden’s Browser
Extension: Unnecessary Retention and Solutions

Rafael Alexandre da Silva Prates

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. João Fernando Peixoto Ferreira
Prof. Alexandra Sofia Ferreira Mendes

Examination Committee

Chairperson: Prof. Luı́s Manuel Antunes Veiga
Supervisor: Prof. João Fernando Peixoto Ferreira

Member of the Committee: Prof. Luı́s David Figueiredo Mascarenhas Moreira Pedrosa

June 2022





Acknowledgments

I would like to thank my parents for their encouragement, caring and support over all these years,

for always being there for me. I would also like to thank my grandparents, aunts, uncles and cousins for

their understanding and support throughout all these years. I would like to thank my godmother as well,

for being a big pillar of support and help during the times where I felt down and could not keep going.

To my friends, every single one of you has played a part in this, not only in helping me grow as a

person but also supporting me and being there for me in the good and bad times of life. For going above

and beyond to help me purely because you cared and wanted me to succeed.

I would also like to acknowledge my dissertation supervisors Prof. João F. Ferreira and Prof. Alexan-

dra Mendes for their insight, support and sharing of knowledge that has made this Thesis possible.

To each and every one of you – Thank you.

This work was partially funded by the PassCert project, a CMU Portugal Exploratory Project funded

by Fundação para a Ciência e Tecnologia (FCT), with reference CMU/TIC/0006/2019.





Abstract

Password-based authentication is still the dominant form of authentication on the web, yet users do

not adopt password managers for fear of them being insecure, unreliable and other reasons. In this

project we modify a password manager to try to comply with certain data security properties as a way to

increase adoption of this type of software that has been increasing in importance.

Taking BitWarden’s Google Chrome extension as our chosen password manager, we define pass-

word manager states and data security properties regarding the master password that we would like

to comply with, perform tests and analyse password retention problems in the application. While the

BitWarden extension interacts with many layers, we decided to only change the application layer, as a

way to understand how much can be done by the developers of these types of applications.

We then introduce our modified extensions that try to solve the issues presented before and introduce

a testing framework that is able to automatically interact with the extension through the graphical user

interface to replicate the use case chosen. While our solution does not completely solve the issue, we

were able to reduce the problem slightly.

Keywords

Password Managers; Password retention; Data security; BitWarden; Google Chrome

iii





Resumo

A autenticação usando senhas ainda é a principal forma de autenticação na internet, porém existem

utilizadores que não adoptam gestores de senhas por medo de que sejam inseguros, desconfiáveis,

entre outros. Neste projeto, nós modificámos um gestor de senhas para que conforme com algumas

propriedades de segurança definidas, para tentar aumentar a adoção deste tipo de software que se tem

tornado cada vez mais relevante com o passar do tempo.

Usando a extensão do Bitwarden para o Google Chrome como o nosso gestor de senhas, nós

definimos estados do gestor de senhas e propriedades de segurança de dados relacionados à senha

mestre que gostarı́amos de satisfazer, corremos testes e analisámos problemas de retenção de senhas

na aplicação. Embora a extensão BitWarden interaja com muitas camadas, nós decidimos modificar

apenas a camada da aplicação, para compreender o quanto pode ser feito pelos programadores deste

tipo de software.

Seguidamente, apresentamos as nossas extensões modificadas que tentam resolver os problemas

discutidos anteriormente e introduzimos uma estrutura de testes que é capaz de interagir com a ex-

tensão automaticamente através da interface gráfica do utilizador para replicar um caso de uso escol-

hido. Embora a nossa solução não resolva o problema completamente, fomos capazes de reduzi-lo.

Palavras Chave

Gestor de senhas; Retenção de senhas; Segurança de dados; BitWarden; Google Chrome

v





Contents

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background work 5

2.1 Password Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 What are they? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 How are passwords stored . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 What is stored on the password vault? . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 How are password vaults encrypted? . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Desired Data Security Properties of a Password Manager . . . . . . . . . . . . . . . . . . 8

2.2.1 Locked (pre-login) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Unlocked (and running) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Locked (and running) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 BitWarden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 BitWarden’s Login Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Security issues of keeping secrets in memory for longer than necessary . . . . . . . . . . 9

2.5 Layers of abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Password retention risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6.1 Application sent to background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6.2 Crash dumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6.3 Delayed garbage collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.4 Different layers of abstraction and lack of secure API . . . . . . . . . . . . . . . . . 12

2.6.5 Function Arguments Copies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Password retention on the BitWarden extension 13

3.1 Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Memory Dump Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Test steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



3.3 Results and observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Observation #1: Prefixes of the Master Password in Memory . . . . . . . . . . . . 17

3.3.2 Observation #2: Prefixes stay longer in memory if the input is left untouched . . . 17

3.3.3 Observation #3: Unlocking the vault does not clear the master password . . . . . . 17

3.4 List of problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Problem #1: Use of immutable data types to hold the master password . . . . . . 17

3.4.2 Problem #2: No zeroization of the master password . . . . . . . . . . . . . . . . . 18

3.4.3 Problem #3: Use of String to communicate master password from interface to

component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Our solution 19

4.1 Common changes between all versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Implementation with a login child component - Child component . . . . . . . . . . . . . . . 24

4.2.1 MasterPasswordCustomInputComponent . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Implementation with a login child component - inlined . . . . . . . . . . . . . . . . . . . . 25

4.4 Implementation without a login child component . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Implementation without a login child component - inlined . . . . . . . . . . . . . . . . . . . 26

5 Evaluation 27

5.1 Preparing the testing environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Automatic testing using Python and PyAutoGUI . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Analysing the created memory dumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.1 Full master password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.2 Partial master password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.3 Child component and no child component . . . . . . . . . . . . . . . . . . . . . . . 32

6 Conclusion 35

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A Code of Project 43

B Results of our extensions 57

viii



List of Figures

2.1 Control flow of logging into BitWarden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The different layers of abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Number of partial and full master password occurrences in memory in the original BitWar-

den extension by test step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Flowchart of how the master password is used in the login component . . . . . . . . . . . 21

5.1 The number of occurrences of the full Master Password (MP) in memory per test step . . 32

5.2 The number of occurrences of the partial MP in memory per test step . . . . . . . . . . . 33

B.1 Number of partial and full master password occurrences in memory in the child compo-

nent extension by test step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

B.2 Number of partial and full master password occurrences in memory in the child compo-

nent inlined extension by test step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B.3 Number of partial and full master password occurrences in memory in the no child com-

ponent extension by test step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B.4 Number of partial and full master password occurrences in memory in the no child com-

ponent inlined extension by test step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



x



List of Tables

5.1 Versions of the software used in the testing procedure . . . . . . . . . . . . . . . . . . . . 29

List of Algorithms

xi



xii



Listings

3.1 How the master password is stored in the login component of BitWarden . . . . . . . . . . 18

4.1 The original masterPassword variable in the login component . . . . . . . . . . . . . . . . 21

4.2 Our modified masterPassword variable, changed to an ArrayBuffer . . . . . . . . . . . . . 22

4.3 The original login function of the authentication service . . . . . . . . . . . . . . . . . . . . 22

4.4 Our modified version of the login function . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 The original crypto functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.6 Our modified version of the crypto functions . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.7 Login component: clearing the master password buffer after the login has been completed 23

4.8 The function responsible for receiving the input and storing it in our modified master pass-

word buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.9 The child component submitting the full MP to the login component . . . . . . . . . . . . . 24

4.10 The onInsideChange function with the Utils.fromUtf8ToArray function inlined . . . . . . . . 25

4.11 Implementation of the Control Value Accessor in the login component . . . . . . . . . . . 26

A.1 The source code of the script that performs the testing procedure . . . . . . . . . . . . . . 43

xiii



xiv



Acronyms

PM Password Manager

RAM Random Access Memory

MP Master Password

GC Garbage Collector

OS Operating System

DOM Document Object Model

JS JavaScript

Chrome Google Chrome

TOS Terms of Service

GUI Graphical User Interface

PV Password Vault

xv



xvi



1
Introduction

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1



2



1.1 Introduction

The need for more passwords has been increasing over the years as password-based authentication is

still the dominant form of authentication on the web [1] and as users sign up to more and more services,

they require more and more passwords. Unfortunately, because the number of passwords a typical

user needs to remember is increasing, users tend to reuse passwords across multiple services or small

variations of the same one and reuse previously leaked passwords [2]. Many users tend to follow these

practices to avoid the cognitive burden of recalling different passwords [3,4] especially when passwords

that are difficult for an attacker to guess are also hard to memorize for the user. This is compounded by

the fact that users see the high amount of effort required to get just a low percentage of passwords in

data breaches and think the ease of use of password reuse outweighs the risk.

Password Managers (PMs) come as a solution to this problem by inheriting the responsibility of

remembering passwords from the user to the software. This in turn allows the user to associate stronger

passwords, that are hard to memorize, but even harder to attack, to the services they use boosting the

user’s security and avoiding the unsafe practices of password reuse, all while offering usability features

such as automatic strong password generation resilient and auto-completion of log in forms to name a

few. PMs also help protect the user against data breaches. By using a strong unique password for each

service, even if one service gets its data breached the rest will be safe since there is no password reuse.

This also lowers the amount of work a user has to do whenever a data breach occurs, since it is easier

to change one password (the one that was breached), than to change all passwords if the user reused

the same password or variations of it on all their services. And while having strong unique passwords is

not exclusive to using a PM, it certainly makes it easier to do so.

And this is important as the number of data breaches are on the rise [5], leaving many users vulner-

able to attacks.

However, PMs are not immune to attacks and a portion of potential users do not feel that using a

PM would provide greater security [6] for their secrets, some think they are insecure [7–10] and some of

them outright distrust [8, 9] PMs as a whole. Because of these reasons and others, these users refuse

to adopt PMs.

In this project, we decided to focus our attention to a particular type of attack that can be used to steal

sensitive data from a computer’s memory. These attacks involve making a copy of the device’s Random

Access Memory (RAM) either through a cold boot attack [11] or through vulnerabilities that might exist

such as HeartBleed [12], MeltDown [13], Specter [14], etc...

In the context of a PM application, it is expected that secrets, such as passwords or cryptographic

material derived from passwords, will have to be in the memory of the process at some point in time

throughout the use of the application. If an attacker is able to extract the memory at the right time, they

will be able to extract and steal that information. As such, it is critical that these secrets are deleted from

3



memory as soon as they are no longer necessary. Although there are different types of sensitive data

an application can hold, we will only focus on user passwords.

Our study will take BitWarden [15] as our PM, more specifically the Google Chrome (Chrome)’s [16]

extension of BitWarden as the case of study. We will be focusing on logging into the PM with a Master

Password (MP) and by dumping the memory of the BitWarden extension process, analyse when the MP

is in memory as well as when it should not be according to some desired data security properties. We

then implement solutions at the application level to try and eliminate this secret in memory when it is no

longer needed.

This project is part of the PassCert research project,1 a CMU-Portugal exploratory project that will

build an open-source, proof-of-concept password manager that through the use of formal verification, is

guaranteed to satisfy properties on data storage and password generation.

1.2 Organization of the Document

This thesis is organized as follows:

Chapter 2 contains the background work, desired memory security properties, BitWarden and its’

login process and password retention risks. In chapter 3, we explain our threat model, perform tests

on the BitWarden Chrome extension, analyse the memory dumps created, compile a list of results

and observations as well as a list of problems with the extension’s code. In chapter 4, we introduce

our modified extensions and explain their changes compared to the original BitWarden extension. In

chapter 5 we present our testing and analysis framework and compare the results between the original

BitWarden extension and our modified extensions. And finally, we present our conclusions and future

work in chapter 6.

1PassCert is a CMU Portugal Exploratory Project funded by Fundação para a Ciência e Tecnologia (FCT), with reference
CMU/TIC/0006/2019

4



2
Background work

Contents

2.1 Password Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Desired Data Security Properties of a Password Manager . . . . . . . . . . . . . . . . 8

2.3 BitWarden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Security issues of keeping secrets in memory for longer than necessary . . . . . . 9

2.5 Layers of abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Password retention risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5



6



This chapter presents the relevant background work needed to understand the following chapters.

We will be introducing what a PM is in general, desired data security properites of a PM, BitWarden’s

login process, the different layers of abstraction between the application code and the machine and

insecure code practices that can retain passwords longer than necessary.

2.1 Password Managers

2.1.1 What are they?

The main feature of PMs consists in storing username information and the correspondent password into

what is known as the Password Vault (PV). The PV is then responsible for storing the user’s information

in an encrypted fashion to ensure that the user’s secrets are kept hidden from attackers.

Since there are various PMs available online, some offer more features such as, password gener-

ation, auto-completion of login forms, cloud storage of the PV, cross-device synchronization and the

list goes on but in the end the basic concept remains the same. The PV may also store other relevant

information like website data, namely URL and icons to name a few, creation date, fill count and other.

This information will be referred to as metadata since it is not vital for logging into an account.

2.1.2 How are passwords stored

Password storage is done by creating a password vault, either on the local system or on the cloud.

When a PV is stored locally, they are usually an encrypted file residing on the local system’s disk. When

stored on the cloud, it also encrypted in some fashion, with the details differing from provider to provider.

The algorithms used to encrypt a PV file differs from PM to PM and most require a MP to reverse the

encryption and be able to access it.

2.1.3 What is stored on the password vault?

A password vault contains entries. There are as many entries as the user wants or needs, but the regular

behaviour is having an entry for each different account. Each entry stores the necessary information for

logging into the account with the minimum usually being the username and password.

In addition, it is not unusual to store metadata along with the entry on the password vault. This

includes but is not limited to:

1. Website metadata such as URL, Icon and name.

2. Password metadata such as creation time, modification time, last use time, fill count and expiration

date.

7



3. User settings namely notes and autofill settings.

Unfortunately not every PM guarantees encryption of all metadata. For example, KeePassX and

KeePassXC both encrypt all metadata [17]. Extension-based password managers encrypt most meta-

data, but all have at least one item they do not. Browser-based managers that rely on the operating

system to encrypt their vaults protect the relevant metadata too. Those that do not rely on the operating

system have a significant amount of unencrypted metadata.

2.1.4 How are password vaults encrypted?

In general, most app-based and extension-based encrypt their vaults using a MP. Requirements for

the MP vary between applications with some not requiring one at all. Browser-based systems (except

Firefox) rely on the operating system instead to help them encrypt the password vault and as such

implementations vary.

2.2 Desired Data Security Properties of a Password Manager

Since this project is done in the context of the PassCert project, BitWarden was chosen as the base PM.

The PassCert project is an effort to create a proof-of-concept PM that through the use of formal veri-

fication, guarantees properties on data storage and password generation [18]. which is the BitWarden

extension for chrome.

With the basic function of a PM in mind, we will define 2 states in which the application is running:

(a) not running; (b) locked (pre-login); (c) unlocked (and running); and (d) locked (session terminated)

[19] .

We will not analyse the PM in its not running state (when Chrome is not opened or the extension is

disabled) as we have decided to focus on the security of the MP in the login process of BitWarden.

2.2.1 Locked (pre-login)

We define BitWarden to be in the ”locked (session terminated)” when the vault has not been unlocked

in the current session. In this state we concede that the MP is stored in the memory of the program

and is visible to potential attackers as the application need the MP to perform the tasks necessary to

authenticate the user.

2.2.2 Unlocked (and running)

We define the BitWarden PM to be in the ”Unlocked (and running)” state once the BitWarden vault is

unlocked. To reach this state, the user must successfully authenticate by entering a valid e-mail and MP.

8



In this state, the MP is no longer necessary to be in memory as we will discuss in section 2.3.1 and

as such, should no longer be in memory.

2.2.3 Locked (and running)

We define the BitWarden PM to be in the ”Locked (and running)” state when (a) the vault is locked

manually; or (b) when the session is terminated. For this project however, we only considered (b) in our

testing. Continuing from the unlocked (and running) state, the MP should not be in memory as well.

2.3 BitWarden

BitWarden is a PM available for different platforms, desktop, mobile, browser extensions and even online.

As expected from a PM, it manages account information like usernames and passwords in a vault.

2.3.1 BitWarden’s Login Authentication

Figure 2.1 is an overview of how BitWarden’s login authentication works. When the user provides the

e-mail address and MP, BitWarden uses Password-Based Key Derivation Function 2 (PBKDF2) [20]

with a 100,000 iteration rounds to stretch the MP, using the e-mail address as salt. The generated

value is a 256 bit Master Key. This Master Key is used in conjugation with the MP as salt to create

the Master Password Hash which is sent to the BitWarden server upon account creation and login, and

used to authenticate the user account. Once the Master Key and the Master Password Hash have been

generated, the MP is no longer required to be in memory, as the application has everything it needs to

authenticate the user.

BitWarden mentions that in their client application they do not store the MP locally or in memory and

that they do their best to ensure that any data that may be in the application to function is only held in

memory for as long as needed [21]. Ideally, the BitWarden extension for Chrome would follow these

principles.

2.4 Security issues of keeping secrets in memory for longer than

necessary

Keeping secrets longer than necessary is dangerous, as it is quite possible for passwords to remain in

memory even after an hour after the program was terminated [22]. An attacker that can obtain a memory

dump of the computer could potentially obtain secrets this way, use them to breach the user’s vault, steal

all the information in it and proceed to breach accounts for other services that were stored in the vault.

9



Figure 2.1: Control flow of logging into BitWarden

2.5 Layers of abstraction

The application we are studying runs on top of several other layers of abstraction. Namely the application

is written in Typescript with the Angular framework. This Typescript code is then transpiled to JavaScript

(JS) using Angular’s transpiler. The JS resulted from this transpilation is then interpreted by browser

(in our case, Chrome) using the browser’s built-in JS interpreter. In Chrome’s case, it uses the V8 JS

engine [23] and the Blink [24] rendering engine. These two communicate with each other to interpret

and display the page. Since Chrome is written in C++, it interfaces with the standard C++ runtime

libraries and any other libraries necessary by Chrome’s code. Lastly, Chrome also has to interface with

the Operating System (OS).

Our project focuses only the application layer as it would be unfeasible to modify everything in the

pipeline.

2.6 Password retention risks

2.6.1 Application sent to background

Modern OS’s implement Virtual Memory which, amongst other things, can allow for secondary memory

to act as main memory. This allows applications to swap memory in RAM to the disk when system

10



BitWarden extension

Angular Typescript

JavaScript/Html/CSS

Google Chrome

V8 JavaScript Engine Blink rendering
engine

Written in

Transpiled into

Runs in

Browser Process

Renderer Process

Delegates to

Operating system

Figure 2.2: The different layers of abstraction

resources are low. This poses a significant risk as a secret could be the memory of a process when

its memory gets written into the disk, prolonging the amount of time a secret is exposed. An attacker

could then steal the secondary memory storage medium (a solid-state drive, hard-disk drive, etc...) and

analyse the paging files to extract secrets that were written to the medium through virtual memory.

2.6.2 Crash dumps

If the computer crashes while the application contains a secret in its memory those secrets could be

written to the crash dump file, exposing them. For example, Windows [25] and Ubuntu [26] (if the kernel

crash dump utility is installed) dump the contents of RAM at the point of crash into a file.

11



2.6.3 Delayed garbage collection

The memory of JS applications are managed by a Garbage Collector (GC). When a piece of memory

is no longer referenced by any variable it will remain in memory until the GC decides to reuse it. The

amount of time that it takes until that piece is reused by the GC is undefined. It can be minutes or even

hours [22], depending on the algorithm used and the system’s resources and workload. This comes

into play when we take immutable types in JS into consideration. The primitive type String in JS is

immutable and thus can not be overwritten manually by the developers, leaving the deletion up to the

GC when it eventually reuses the piece of memory that contained the String object and overwrites it with

some other value. This is a known problem when using immutable data types for sensitive information,

such that even Java’s Cryptographic Architecture recommends using mutable data structure types [27]

for passwords and secret data.

2.6.4 Different layers of abstraction and lack of secure API

Since the BitWarden extension runs on top of other layers, any communication between these layers

has the possibility of creating buffer copies of sensitive data and having that data retained for a period of

time, outside of the control of the application itself. Without any options of a secure API between layers,

the application developers have no control over how the layers that the application interacts with treat

the data.

2.6.5 Function Arguments Copies

Whenever a primitive type is passed to a JS function, a new copy of it is made [28]. This presents a

problem because if a secret is passed to a function using a String data type, then a new immutable copy

of the secret is created hence increasing the amount of copies of it in memory. Numerous copies of

the secrets in memory means that it is harder for the GC to delete and reuse those memory pieces in a

timely manner, as discussed in subsection 2.6.3.

12



3
Password retention on the BitWarden

extension

Contents

3.1 Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Memory Dump Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Results and observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 List of problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

13



14



3.1 Threat model

Our work assumes an attacker has access to a snapshot of the memory of the computer through a

memory disclosure attack or through a memory dump of the system. This could be from a crash dump

file, like we discussed in section 2.6.2 or through a cold boot attack [11].

3.2 Memory Dump Analysis

We performed several tests on the BitWarden extension for the Chrome browser by dumping the memory

of the Chrome process responsible for running the BitWarden Extension. These memory dumps were

done several times at different points in time, throughout the use of the extension.

3.2.1 Test steps

The points of time in which we perform a memory dump will be referred to as a ”test step” in the testing

procedure. As such, the following is an overview when the process’ memory is dumped:

• Step 0 - After typing the e-mail in the e-mail field, but before typing the MP into the password box;

• Step 1 - After half the MP was typed into the password box;

• Step 2 - After the MP was fulled typed;

• Step 3 - After logging in and unlocking the BitWarden Vault;

• Step 4 - After simulating a task;

• Step 5 - After terminating the BitWarden session.

A more in-depth look at the testing procedure will be presented in chapter 5.

3.3 Results and observations

In the memory dumps, we refer to both a partial MP and a full MP. A full MP is the set of characters

that compose the entirety of the MP, whether they be encoded in 8-bit (UTF-8/ASCII) or 16-bit (UTF-16)

encoding. Given a full MP p of length i, a partial MP is defined by the subset pj , j ∈ { i2 , ..., i − 1}. This

applies to both UTF-8/ASCII encodings and UTF-16 encoding.

In fig. 3.1, we can see the results of the testing procedure performed on the original BitWarden

extension. In Step 0, there are no occurrences of the MP in memory. This is to be expected, since

nothing of MP has been typed yet. Also, the memory given to the process is zeroed out by Linux’s virtual

15



0 10 20 30 40
Number of master password occurences in the original BitWarden extension

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Te
st

 st
ep

0

1

10

10

1

1

0

12.84

47.47

4.56

4.34

2.24

0

0

1

5

1

1

0

0

8.98

7.46

2.75

0.52

Partial MP UTF-8
Partial MP UTF-16
Full MP UTF-8
Full MP UTF-16

Figure 3.1: Number of partial and full master password occurrences in memory in the original BitWarden extension
by test step

memory manager before making it available [29] to the process. This means that even if the process was

given an address of memory that previously stored the MP from a previous test, it would not interfere

with the results of the current test, since the memory give would be wiped beforehand. In step 1 and

2, as the user is typing the MP we see the number of occurrences rise. We mainly see occurrences

of the partial and full MP encoded in UTF-16. This is because Chrome’s JS engine, the V8 JavaScript

engine, implements the ECMAScript standard which states that the primitive string type is to be encoded

in UTF-16 [30].

As mentioned in section 2.2, it would be ideal if after the vault is unlocked (step 3), the MP would

no longer be accessible in memory. However, our findings show that is not the case. There are still

occurrences of the full MP and occurrences of the partial MP after logging in and unlocking the vault.

Even after simulating a simple task, with the intention of increasing the system’s load and resource usage

to promote memory clean up by the GC, not all occurrences were cleared. Terminating the session and

logging out decreases the occurrences but does not completely erase everything. This means the MP

can be obtained from memory, for an indefinite amount of time as we mentioned in section 2.6.3, even

16



after the the user closes the BitWarden vault.

3.3.1 Observation #1: Prefixes of the Master Password in Memory

The underlying data structure responsible for storing the MP as it is being typed, is an immutable string.

Since we can not modify immutable data types, a new object has to be created. So given a password

p with length i, when a new character c is added a new string object is created with the result of pi + c.

Likewise, when a character is removed, a new object is created with the value of pi−1. The previous

memory addresses are no longer referred to and cleanup is left up to the GC system. As shown in

fig. 3.1, we were able to identify memory addresses that contained prefixes of the full MP.

3.3.2 Observation #2: Prefixes stay longer in memory if the input is left un-

touched

As discussed in subsection 3.3.1, new string objects are created whenever the user types or deletes

characters while typing the MP. In our testing, we discovered that if the MP is typed relatively quickly

without much delay between keystrokes (around a second or so), the amount of prefixes in memory

would decrease compared to when the user types a portion of the MP, leaves it untouched for more

than a second or two and then continues typing the rest of the MP.

3.3.3 Observation #3: Unlocking the vault does not clear the master password

After unlocking the vault, the MP is no longer required to be in memory as mentioned in section 2.3.1,

but continues to be, even after the user locks the vault and terminates the session.

3.4 List of problems

While analysing the BitWarden’s extension source code of the login process we compiled a list of prob-

lems within it. Lee et al. [31] found similar issues in Android applications and were able to eliminate

leftover passwords from memory by solving them.

3.4.1 Problem #1: Use of immutable data types to hold the master password

In the login component of BitWarden, the MP is stored in an immutable String. Like we mentioned in

section 2.6.3, application has no way to erase the content of that String, leaving the deletion of the secret

up to the GC.

17



Listing 3.1: How the master password is stored in the login component of BitWarden

1 masterPassword: string = '';

3.4.2 Problem #2: No zeroization of the master password

Due to the problem mentioned above, BitWarden does not go through the effort to try and zero out the

content of the variable that holds the MP.

3.4.3 Problem #3: Use of String to communicate master password from inter-

face to component

In an Angular application, the application can access the information in a native element of the Document

Object Model (DOM) through a Control Value Accessor [32]. In our case, BitWarden interacts with the

input field responsible for the MP in the login page to receive the MP written by the user into the login

component to perform the login process. Unfortunately, Angular only provides the DefaultValueAccessor

[33] in input fields of type text. This accessor provides whatever is written into the input field to the

application, as a String type.

Since we decided for this project to focus only on changes that could be done at the application layer,

we have to use what Angular provides. However, in section 4.2 we present how we tried to mitigate this

problem.

18



4
Our solution

Contents

4.1 Common changes between all versions . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Implementation with a login child component - Child component . . . . . . . . . . . 24

4.3 Implementation with a login child component - inlined . . . . . . . . . . . . . . . . . 25

4.4 Implementation without a login child component . . . . . . . . . . . . . . . . . . . . . 26

4.5 Implementation without a login child component - inlined . . . . . . . . . . . . . . . 26

19



20



In this section, we will describe the fixes we implemented at an application-level in the BitWarden

Chrome Extension to try and reduce the amount of MP copies found after logging into the BitWarden

Vault.

Two versions of the program were created with one fundamental difference: one uses a separate An-

gular component that deals with the input of the MP and communicates with the login parent component,

while the other version has the login component deal with the MP input directly, without using a separate

Angular component. This way, we can compare if the Angular communication between components is a

factor that could lead to password leakage in our program. Each of these versions also has a variation

where we inlined a function in a critical area to see how it would affect the amount of occurrences of the

MP in the memory of the process.

This gives us four different versions in total: (a) Child component; (b) Child component - inlined;

(c) No child component; and (d) No child component - inlined.

4.1 Common changes between all versions

The login component performs a few steps with the MP to complete the login process. First, it checks

if the MP is not empty and then delegates the login to the authentication service, passing the e-mail

and MP of the user. The authentication service then passes the MP and other information to the crypto

service for (a) making the Master Key (makeKey); and (b) making the Master Password Hash (hash-

Password). Once the Master Password Hash is complete, it uses it and the e-mail to perform the login

and the login component receives a form response and proceeds with the rest of the login process.

login component authentication 
service

Master Password

Form response

crypto service

makeKey(Master Password) 
and 

hashPassword(Master Password)

Master Password Hash

Master Key

Figure 4.1: Flowchart of how the master password is used in the login component

The first change we implemented was to change the immutable variable type of the MP (string) in

the LoginComponent to a mutable data structure.

Listing 4.1: The original masterPassword variable in the login component

1 export class LoginComponent {

21



2 masterPassword: string = '';

3 }

Listing 4.2: Our modified masterPassword variable, changed to an ArrayBuffer

1 export class LoginComponent {

2 masterPasswordBuffer : ArrayBuffer;

3 }

In our case, we decided to use a JS ArrayBuffer [34] for a few reasons. First of all, it is a mutable data

type fixing the problems specified in Problem #1 (section 3.4.1) and giving us an opportunity to address

Problem #2 (section 3.4.2) as well. Secondly, BitWarden’s login code flow makes a few calls to services

of the application with the MP, those being the authentication and cryptographic service as discussed

above. All of these function calls already have support for the ArrayBuffer data structure. This allowed

us to change the function parameters of the functions calls to accept an ArrayBuffer data type instead

of the previously used string. Since we are no longer passing a primitive JS type (string) to several

functions, but instead a reference type (ArrayBuffer), JS will instead pass the argument (in this case the

MP) by sharing (call by sharing). This avoids making extra copies of the MP when it is passed down to

a function. This addresses Problem #3 discussed in section 3.4.3.

Listing 4.3: The original login function of the authentication service

1 logIn: (email: string , masterPassword: string) => Promise<AuthResult>;

Listing 4.4: Our modified version of the login function

1 logInWithArrayBuffer: (email: string , masterPassword: ArrayBuffer) =>

Promise<AuthResult>;

We replicated these changes in the crypto service as well.

Listing 4.5: The original crypto functions

1 makeKey: (password: string , salt: string , kdf: KdfType , kdfIterations:

number) => Promise<SymmetricCryptoKey>;

22



2 hashPassword: (password: string , key: SymmetricCryptoKey , hashPurpose ?:

HashPurpose) => Promise<string>;

Listing 4.6: Our modified version of the crypto functions

1 makeKeyWithArrayBuffer: (masterPassword: ArrayBuffer , email: string ,

kdf: KdfType , kdfIterations: number) => Promise<SymmetricCryptoKey>;

2 hashPasswordWithArrayBuffer: (masterPassword: ArrayBuffer , key:

SymmetricCryptoKey , hashPurpose ?: HashPurpose) => Promise<string>;

After BitWarden performs the login process, Problem #2 is addressed as the MP is no longer required

to be in memory. To do so, the ArrayBuffer containing the MP is manually overwritten before the variable

is set to null to help it being marked for garbage collection. Because JS’s memory management is auto-

matic it will either be reused throughout the execution of the program or freed up and used elsewhere,

like another process running on the computer. This process might take a while, but since we cleared the

buffer previously, the MP contained is no longer there.

Listing 4.7: Login component: clearing the master password buffer after the login has been completed

1 (...)

2 this.formPromise = this.authService.logInWithArrayBuffer(this.email ,

this.masterPasswordBuffer);

3 const response = await this.formPromise;

4

5 let masterPasswordBufferView = new Uint8Array(this.masterPasswordBuffer)

;

6 this.clearArrayBuffer(masterPasswordBufferView);

The next change we had to implement was due to how Angular/JavaScript reads the MP from the

DOM. The two different approaches (both the one using a child component and one without using one)

are explained below.

23



4.2 Implementation with a login child component - Child compo-

nent

To try and receive the MP in a more secure manner, we devised a new component responsible solely on

bridging the communication between the native input element in the DOM and the login Angular Form.

To do this, we implemented Angular’s Control Value Accessor interface on the component to change the

default behaviour. Later on, the login component of Angular receives the ArrayBuffer with the full MP

from this child component and proceeds to perform the login.

4.2.1 MasterPasswordCustomInputComponent

This component is responsible for listening to input changes from the password input field coming from

the DOM. Our approach consists of receiving the input through a function, and storing it in an Array-

Buffer. We also take the care to zero out the data of the previous ArrayBuffer, which contained the

previous password input.

Listing 4.8: The function responsible for receiving the input and storing it in our modified master password buffer

1 onInsideChange(receivedString: string) {

2

3 let inputArrayView = new Uint8Array(this.modifiedinput);

4 inputArrayView.fill (1);

5

6 this.modifiedinput = Utils.fromUtf8ToArray(receivedString).buffer;

7 this.onChange(this.modifiedinput);

8 }

Unfortunately, the application is forced to receive the input from the DOM as a string, as it is the

only text format that Angular supports. Like we said previously, this creates a copy of the input and it

is also immutable, leaving the deletion up to the GC. To mitigate further damage, we do not store the

input in the function and only use it when we absolutely must, to transform the input information to the

ArrayBuffer.

After the user types the entire MP and clicks the login button, the child component sends the Array-

Buffer with the full MP to the login component. The login component then performs the login process as

usual.

24



Listing 4.9: The child component submitting the full MP to the login component

1 submitToParent () {

2 this.sendPasswordToParentEvent.emit(this.modifiedinput);

3 }

4.3 Implementation with a login child component - inlined

In listing 4.8, we use a function (Utils.fromUtf8ToArray) to convert the string input to an ArrayBuffer. This

means we are passing a string into the function which creates an additional copy of the argument as

discussed in section 2.6.5. Since this function is called every time the input field changes (whenever a

new character is added or deleted), this could lead to potentially even more copies of the input being

created.

We made an extension, called the child component inlined, where we inlined the Utils.fromUtf8ToArray

function to see if it would make a significant difference in the amount of password leakage. The change

is described in listing 4.10.

Listing 4.10: The onInsideChange function with the Utils.fromUtf8ToArray function inlined

1 onInsideChange(receivedString: string) {

2

3 let inputArrayView = new Uint8Array(this.modifiedinput);

4 inputArrayView.fill (1);

5

6 if (Utils.isNode || Utils.isNativeScript) {

7 this.modifiedinput = new Uint8Array(Buffer.from(receivedString ,

'utf8')).buffer;

8 } else {

9 const strUtf8 = unescape(encodeURIComponent(receivedString));

10 const arr = new Uint8Array(strUtf8.length);

11 for (let i = 0; i < strUtf8.length; i++) {

12 arr[i] = strUtf8.charCodeAt(i);

13 }

14 this.modifiedinput = arr.buffer;

15 }

16

17 this.onChange(this.modifiedinput);

25



18 }

4.4 Implementation without a login child component

As a way to understand if the communication between Angular components could produce extra copies

of the MP in memory, we also devised a version without an extra component, where the login compo-

nent deals with the input of the MP. In this version, the Control Value Accessor interface was directly

implemented in the login component.

Listing 4.11: Implementation of the Control Value Accessor in the login component

1 export class LoginComponent {

2

3 (...)

4 onInsideChange(receivedString: string) {

5

6 let inputArrayView = new Uint8Array(this.modifiedinput);

7 inputArrayView.fill (1);

8

9 this.modifiedinput = Utils.fromUtf8ToArray(receivedString).buffer;

10 this.onChange(this.modifiedinput);

11 }

12

13 (...)

14 }

4.5 Implementation without a login child component - inlined

Similarly to what we did in the child component inlined extension (listing 4.10), we simply inlined the

Utils.fromUtf8ToArray function.

26



5
Evaluation

Contents

5.1 Preparing the testing environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Automatic testing using Python and PyAutoGUI . . . . . . . . . . . . . . . . . . . . . 29

5.3 Analysing the created memory dumps . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

27



28



5.1 Preparing the testing environment

A Vagrantbox was created that runs Linux Ubuntu containing Chrome, the official BitWarden extension

for Chrome, our modified extensions, all the required packages for running the Python scripts and all the

required packages to create a local BitWarden server. Additionally, it also sets up the local BitWarden

server and starts it in preparation for the testing procedure. We originally performed tests using BitWar-

den’s servers, however, once we automated the testing procedure we started performing the tests on our

own locally hosted BitWarden server for several reasons: (a) the traffic and usage patterns performed in

the testing procedure violate BitWarden’s Terms of Service (TOS); (b) logging into BitWarden does not

require captchas to be solved when the server is locally hosted which simplifies our testing procedure;

(c) no need to create a BitWarden account in BitWarden’s hosted servers; and (d) the testing procedure

is no longer dependent on the availability of BitWarden’s services.

Table 5.1 shows the relevant software and versions used in our testing.

Name Version
Linux Ubuntu 20.04.4 LTS
Oracle VM VirtualBox 6.1.32r149290
Google Chrome 9.0.4844.51-1
BitWarden Google Chrome Extension 1.55.0, 8 Dec 2021
PyAutoGui 0.9.53

Table 5.1: Versions of the software used in the testing procedure

5.2 Automatic testing using Python and PyAutoGUI

To check the differences in password leakage between the normal BitWarden extension and our modified

extensions, we devised a script using Python and PyAutoGui [35] to automatically perform a testing

procedure to replicate a use case of the application. Automating the testing procedure made testing the

different extensions easier and made the tests across the different extensions more consistent with each

other, giving us more confidence over the results. We also have the advantage of being able to perform

a large number of tests per extension this way, giving us more statistical relevance. Lastly, replicating

how a user interacts with the Graphical User Interface (GUI) of the extension made the test closer to in

behaviour to how a user perform a task in a use case in the BitWarden extension, as well as replicating

any type of memory pattern that might happen from such behaviour, leading us to more accurate results.

The script uses PyAutoGui to perform several GUI interactions with the OS, Chrome and the BitWar-

den extensions (both the official one and our modified ones). The following is a summary of what the

program does:

• Resets Chrome’s settings to a default known state

29



• Opens Chrome and points the BitWarden extension to use the locally hosted server

• Closes Chrome (this is to avoid having multiple processes with the BitWarden name which breaks

our script)

• Opens Chrome again

• Clicks on the extensions icon and then the BitWarden extension

• Clicks on the log in button and types the e-mail in the e-mail field

• Test step 0: Performs a memory dump before writing the MP in the login page

• Test step 1: Types half of the MP and performs a memory dump

• Test step 2: Types the second half of the MP (now complete) and performs a memory dump

• Test step 3: Unlocks the vault and performs a memory dump once it is open

• To simulate a task, the script opens up a new tab, and plays a video on Vimeo [36] for around a

minute

• Test step 4: After a minute has passed, it performs a memory dump again

• Clicks on the extensions icon and then the BitWarden extension

• Goes to the settings tab

• Test step 5: Finally, it terminates the session on the BitWarden extension, performs a memory

dump and proceeds to close Chrome

5.3 Analysing the created memory dumps

To facilitate the analysis of the memory dumps, a Python script was also made, responsible for going

through all the memory dumps created at the different steps of the testing procedure. It opens the

memory dumps in binary mode and simply reads the memory into the program and scans the memory

dump for four different things:

1. The first half of the MP in 8-bit encoding (UTF-8/ASCII) and 16-bit encoding (UTF-16)

2. The full MP in 8-bit encoding and 16-bit encoding as well

30



To calculate the number of partial MP occurrences, we count the amount of times the first half of the

MP has appeared in memory and subtract it with the number of times the full MP was in memory as well,

since the partial MP is a prefix of the full MP.

It then creates a CSV file with the results, ordered by test number. The file contains the number of

occurrences of the partial and full MP, in both encodings, at the different steps of the testing procedure.

5.4 Results

What test step corresponds to which phase of the testing procedure is in section 5.2. The total number

of occurrences of the full MP was calculated by summing the occurrences of the full MP in both UTF-

8/ASCII encodings and UTF-16 encoding. Likewise, the same process was done for calculating the total

number of partial MP occurrences, by summing the partial MP occurrences in both encodings described

previously.

The raw analysis of the memory dumps obtained from the tests of all of our extensions are presented

in appendix B.

5.4.1 Full master password

The results of our extensions against the original BitWarden extension are shown in fig. 5.1.

In test step 0 and 1, the full MP is not in memory, as it has not been fully typed yet. In test step 2,

when we finish typing the full MP, our extensions have more copies of the full MP in memory. However

as we said in section 2.2, we concede that the MP can be in memory while the user has not performed

the login process. In test step 3, when we perform the login and unlock the vault, our extensions are able

to reduce the copies present in memory when compared to the original extension. We see this trend in

later steps for the other extensions as well, except in test step 4 and 5, where the no child component

extension is slightly worse when compared to the original one.

The child component inlined extension is the one that performed the best right after step 3, having

less full MP occurrences than the rest, but performed slightly worse than others in step 4 and 5.

5.4.2 Partial master password

The results of our extensions against the original BitWarden extension are shown in fig. 5.2

In test step 0, we see no references as the MP has not been typed yet. In test step 1, when the first

half of the MP has been typed, we see similar results to the original BitWarden extensions. The rest of

the test steps almost mimic the results obtained in section 5.4.1. We have an increase in occurrences in

step 2 but after logging in and unlocking the vault in step 3, we see a reduction of copies in memory over

31



0 1 2 3 4 5
Test step

0

2

4

6

8

10

12

Nu
m

be
r o

f (
fu

ll)
 m

as
te

r p
as

sw
or

d 
oc

cu
rre

nc
es

 (U
TF

-8
 &

 U
TF

-1
6)

Original
Child component
Child component inlined
No child component
No child component inlined

Figure 5.1: The number of occurrences of the full MP in memory per test step

all extensions, except the no child component extension. It stands to note that the no child component

extension performs worse when compared to the original BitWarden extensions across the board, when

it comes to the partial MP.

The child component and child component inlined extensions performed very similarly, with the child

component inlined extension being slightly better in steps 4 and 5 compared to the child component

extension.

5.4.3 Child component and no child component

Our no child component extension compares worse than the rest of our extensions and even BitWarden’s

original extension in some cases. We find this behaviour odd, as the results between the no child inlined

component (where the difference between it and the no child component is simply a function being

32



0 1 2 3 4 5
Test step

0

10

20

30

40

50

60

70

80

Nu
m

be
r o

f (
pa

rti
al

) m
as

te
r p

as
sw

or
d 

oc
cu

rre
nc

es
 (U

TF
-8

 &
 U

TF
-1

6)

Original
Child component
Child component inlined
No child component
No child component inlined

Figure 5.2: The number of occurrences of the partial MP in memory per test step

inlined) and the child component extensions (both the normal and inlined version) are much similar

between each other. Without access to external tools, it is hard to say what causes this discrepancy.

33



34



6
Conclusion

Contents

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

35



36



6.1 Conclusion

In conclusion, even though our modified extensions were able to reduce the occurrences of the full MP

in memory after logging in and unlocking the vault, they were unable to completely remove every trace

of the MP, even after performing tasks on the system. As such, an attacker that gains a snapshot of

memory after the vault was unlocked, is likely to able to successfully retrieve the MP of the user.

This shows that changes in the application layer are not enough to completely eliminate leftover MPs

references in the memory of the process, and efforts must be made in every step of the stack to ensure

that sensitive data is dealt with and properly disposed of to ensure the desired data security properties.

6.2 Future work

Modifying the Angular framework to create a new, more secure way to bridge communication from the

native DOM to application would be something to work on. On the browser side, while Chrome is

closed-source, there are open-source alternatives (like Chromium [37] and Firefox [38]) that could be

changed to introduce a secure API to deal with sensitive data on the DOM so communication with web

applications could be more secure. Finally, one could change the OS in which the application is running,

to ensure that communication between the OS and the other layers would follow the same secure API

protocols that we desire.

37



38



Bibliography

[1] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano, “The quest to replace passwords: A

framework for comparative evaluation of web authentication schemes,” in 2012 IEEE Symposium

on Security and Privacy. IEEE, 2012, pp. 553–567.

[2] C. Wang, S. T. Jan, H. Hu, D. Bossart, and G. Wang, “The next domino to fall: Empirical analysis

of user passwords across online services,” in Proceedings of the Eighth ACM Conference on Data

and Application Security and Privacy, 2018, pp. 196–203.

[3] M. Dell’Amico, P. Michiardi, and Y. Roudier, “Password strength: An empirical analysis,” in 2010

Proceedings IEEE INFOCOM. IEEE, 2010, pp. 1–9.

[4] S. Riley, “Password security: What users know and what they actually do,” Usability News, vol. 8,

no. 1, pp. 2833–2836, 2006.

[5] P. Fasulo, Aug 2018. [Online]. Available: https://securityscorecard.com/blog/

cybersecurity-data-breaches-statistics-on-the-rise

[6] S. Chiasson, P. C. van Oorschot, and R. Biddle, “A usability study and critique of two password

managers.” in USENIX Security Symposium, vol. 15, 2006, pp. 1–16.

[7] “65% of people don’t trust password managers despite 60% experiencing a data breach,” Jul 2020.

[Online]. Available: https://www.passwordmanager.com/password-manager-trust-survey/

[8] N. Alkaldi and K. Renaud, “Why do people adopt, or reject, smartphone password managers?”

2016.

[9] E. Stobert and R. Biddle, “A password manager that doesn’t remember passwords,” in Proceedings

of the 2014 New Security Paradigms Workshop, 2014, pp. 39–52.

[10] S. Aurigemma, T. Mattson, and L. Leonard, “So much promise, so little use: What is stopping home

end-users from using password manager applications?” 2017.

39

https://securityscorecard.com/blog/cybersecurity-data-breaches-statistics-on-the-rise
https://securityscorecard.com/blog/cybersecurity-data-breaches-statistics-on-the-rise
https://www.passwordmanager.com/password-manager-trust-survey/


[11] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J. Feld-

man, J. Appelbaum, and E. W. Felten, “Lest we remember: cold-boot attacks on encryption keys,”

Communications of the ACM, vol. 52, no. 5, pp. 91–98, 2009.

[12] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver, D. Adrian, V. Paxson,

M. Bailey et al., “The matter of heartbleed,” in Proceedings of the 2014 conference on internet

measurement conference, 2014, pp. 475–488.

[13] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D. Genkin, Y. Yarom,

and M. Hamburg, “Meltdown,” arXiv preprint arXiv:1801.01207, 2018.

[14] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,

T. Prescher et al., “Spectre attacks: Exploiting speculative execution,” in 2019 IEEE Symposium on

Security and Privacy (SP). IEEE, 2019, pp. 1–19.

[15] “Bitwarden open source password manager.” [Online]. Available: https://bitwarden.com/

[16] “Google chrome.” [Online]. Available: https://www.google.com/chrome/

[17] S. Oesch and S. Ruoti, “That was then, this is now: A security evaluation of password generation,

storage, and autofill in browser-based password managers,” in Proc. of USENIX Security Symp,

2020.

[18] M. Grilo, J. F. Ferreira, and J. B. Almeida, “Towards formal verification of password generation

algorithms used in password managers,” arXiv preprint arXiv:2106.03626, 2021.

[19] “Password managers’ secrets management: Ise,” Oct 2020. [Online]. Available: https:

//www.ise.io/casestudies/password-manager-hacking/

[20] B. Kaliski, 2000. [Online]. Available: https://tools.ietf.org/html/rfc2898

[21] “Bitwarden security whitepaper.” [Online]. Available: https://bitwarden.com/help/

bitwarden-security-white-paper/

[22] S. Karayianni, V. Katos, and C. K. Georgiadis, “A framework for password harvesting from volatile

memory,” International Journal of Electronic Security and Digital Forensics 7, vol. 4, no. 2-3, pp.

154–163, 2012.

[23] “V8 javascript engine.” [Online]. Available: https://v8.dev/

[24] “Blink (rendering engine).” [Online]. Available: https://www.chromium.org/blink/

[25] “Generate a kernel or complete crash dump - windows.” [Online]. Available: https://docs.microsoft.

com/en-us/windows/client-management/generate-kernel-or-complete-crash-dump

40

https://bitwarden.com/
https://www.google.com/chrome/
https://www.ise.io/casestudies/password-manager-hacking/
https://www.ise.io/casestudies/password-manager-hacking/
https://tools.ietf.org/html/rfc2898
https://bitwarden.com/help/bitwarden-security-white-paper/
https://bitwarden.com/help/bitwarden-security-white-paper/
https://v8.dev/
https://www.chromium.org/blink/
https://docs.microsoft.com/en-us/windows/client-management/generate-kernel-or-complete-crash-dump
https://docs.microsoft.com/en-us/windows/client-management/generate-kernel-or-complete-crash-dump


[26] “Kernel crash dump.” [Online]. Available: https://ubuntu.com/server/docs/kernel-crash-dump

[27] “Java ™ cryptography architecture (jca) reference guide.” [Online]. Available: https://docs.oracle.

com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html#PBEEx

[28] “Functions - javascript.” [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Functions

[29] M. Gorman, Understanding the Linux virtual memory manager. Prentice Hall Upper Saddle River,

2004.

[30] “Ecmascript 2023 language specification.” [Online]. Available: https://tc39.es/ecma262/

#sec-literals-string-literals

[31] J. Lee, A. Chen, and D. S. Wallach, “Total recall: Persistence of passwords in android.” in NDSS,

2019.

[32] “Control value accessor angular.” [Online]. Available: https://angular.io/api/forms/

ControlValueAccessor

[33] “Defaultvalueaccessor angular.” [Online]. Available: https://angular.io/api/forms/

DefaultValueAccessor

[34] “Arraybuffer - javascript.” [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global Objects/ArrayBuffer

[35] “Pyautogui’s documentation.” [Online]. Available: https://pyautogui.readthedocs.io/en/latest/

[36] “Vimeo.” [Online]. Available: https://vimeo.com/

[37] “The chromium project.” [Online]. Available: https://www.chromium.org/chromium-projects/

[38] “Firefox browser.” [Online]. Available: https://www.mozilla.org/

41

https://ubuntu.com/server/docs/kernel-crash-dump
https://docs.oracle.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html#PBEEx
https://docs.oracle.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html#PBEEx
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions
https://tc39.es/ecma262/#sec-literals-string-literals
https://tc39.es/ecma262/#sec-literals-string-literals
https://angular.io/api/forms/ControlValueAccessor
https://angular.io/api/forms/ControlValueAccessor
https://angular.io/api/forms/DefaultValueAccessor
https://angular.io/api/forms/DefaultValueAccessor
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://pyautogui.readthedocs.io/en/latest/
https://vimeo.com/
https://www.chromium.org/chromium-projects/
https://www.mozilla.org/


42



A
Code of Project

In the following appendix we present the full source code for the testing procedure script, which performs

the testing procedure on the environment we set up, and the memory dump analyser script, which

analyses the memory dumps created by the previous script and creates a CSV files with the results.

Listing A.1: The source code of the script that performs the testing procedure

1 import logging

2 import os

3 import pyautogui

4 import time

5 import sys

6 import psutil

7 import re

8 import configparser

9

10 '''

43



11 Dependencies (so far)

12 python

13 pyautogui

14 pillow

15 opencv

16 psutil

17 '''

18

19 #region Global Variables

20 #Stages of mem dumps

21 MEMDUMP_BEFORE_TYPING = '0-before -typing -MP'

22 MEMDUMP_MID_TYPING_MP = '1-mid -typing -MP'

23 MEMDUMP_FINISH_TYPING_MP = '2-finish -typing -MP'

24 MEMDUMP_ON_UNLOCK = '3-on -unlock '

25 MEMDUMP_ON_TASK_FINISHED = '4-on -task -finished '

26 MEMDUMP_SESSION_TERMINATED = '5-session -terminated '

27

28 #File locations for the Icons

29 COMMAND_PROMPT = "/home/vagrant/passcert/memdump -tests/icons/Command_Prompt.

png"

30 EXTENSIONS_BUTTON = "/home/vagrant/passcert/memdump -tests/icons/

Extensions_Icon.png"

31 BITWARDEN_BUTTON = "/home/vagrant/passcert/memdump -tests/icons/BitWarden_Icon

.png"

32 LOGIN_BUTTON = "/home/vagrant/passcert/memdump -tests/icons/Log_In_Button.png"

33 E_MAIL_TEXT = "/home/vagrant/passcert/memdump -tests/icons/E-mail_Text.png"

34 GOOGLE = "/home/vagrant/passcert/memdump -tests/icons/Google.png"

35 PLAY_BUTTON = "/home/vagrant/passcert/memdump -tests/icons/Play_Button.png"

36 BITWARDEN_BLUE_BUTTON = "/home/vagrant/passcert/memdump -tests/icons/

BitWarden_Icon_Logged_In.png"

37 OPTIONS_BUTTON = "/home/vagrant/passcert/memdump -tests/icons/Options.png"

38 YES_BUTTON = "/home/vagrant/passcert/memdump -tests/icons/Yes_Button.png"

39 BITWARDEN_ENV_SETTINGS = "/home/vagrant/passcert/memdump -tests/icons/

BitWarden_Env_Settings_Button.png"

40

41 #Task time

42 TASK_TIME = 60

43 #endregion

44



44

45 #region Functions

46 def pause(secs_to_pause=1):

47 """ Pauses the script for secs_to_pause seconds.

48 """

49

50 time.sleep(secs_to_pause)

51

52 def getExtensionName(extensionDir):

53 head ,_ = os.path.split(extensionDir)

54 _, extensionName = os.path.split(head)

55

56 return extensionName

57

58 def memdump(pid , nthTest , iteration , dumpSaveLocation , extensionName):

59 # maps contains the mapping of memory of a specific project

60 map_file = f"/proc/{pid}/maps"

61 mem_file = f"/proc/{pid}/mem"

62

63 # output directory

64 out_dir = os.path.join(dumpSaveLocation , extensionName)

65 # output file

66 out_file = os.path.join(out_dir , f'{nthTest}-{iteration }.dump')

67 #Make sure the directory exists , and if not create it

68 os.makedirs(out_dir , exist_ok=True)

69

70 logging.info('Starting mem dump on PID %d...', pid)

71 # iterate over regions

72 with open(map_file , 'r') as map_f , open(mem_file , 'rb', 0) as mem_f , open

(out_file , 'wb') as out_f:

73 for line in map_f.readlines (): # for each mapped region

74 m = re.match(r'([0-9A-Fa-f]+) -([0-9A-Fa-f]+) ([-r])', line)

75 if m.group(3) == 'r': # readable region

76 start = int(m.group(1), 16)

77 end = int(m.group(2), 16)

78 mem_f.seek(start) # seek to region start

79 #print(hex(start), '-', hex(end))

80 try:

45



81 chunk = mem_f.read(end - start) # read region contents

82 out_f.write(chunk) # dump contents to standard output

83 except OSError:

84 print(hex(start), '-', hex(end), '[error ,skipped]', file=

sys.stderr)

85 continue

86 logging.info('Memory dump saved to %s', out_file)

87

88 def findImage(imageFile):

89 """ Scans the screen to find a section equal to the imageFile. Returns a

box with the position of the match in screen coordinates if

successful ,

90 None otherwise.

91

92 The function matches a section of the screen if 90% of its' pixels match

the given imageFile.

93 """

94

95 try:

96 match = pyautogui.locateOnScreen(imageFile , confidence=0.9)

97

98 if not match:

99 logging.info("Image %s not found.", os.path.basename(imageFile))

100 return match

101 else:

102 logging.info('Image %s found at x=%d, y=%d.', os.path.basename(

imageFile), match.left , match.top)

103 return match

104 except pyautogui.ImageNotFoundException:

105 #NOTE: Even though the documentation says locateOnScreen should send

this exception , I've never actually seen it raise it. Still , for

precaution

106 logging.info("Image %s not found.", os.path.basename(imageFile))

107 return None

108

109 def findAndClick(imageFile , delayBeforeClicking=0):

110 """ Scans the screen to find a section equal to the imageFile and clicks

the center of the section if found , after the specified delay in

46



seconds

111 (by default it has no delay).

112 Returns True if the image was located and clicked , False otherwise.

113

114 The function matches a section of the screen if 90% of its' pixels match

the given imageFile.

115 """

116

117 buttonLocation = findImage(imageFile)

118 if buttonLocation != None:

119 pause(delayBeforeClicking)

120 pyautogui.click(buttonLocation.left , buttonLocation.top)

121 return True

122 else:

123 return False

124

125 def waitForImage(imageFile , addedDelay=0):

126 """ Continously scans the screen every second to find a section equal to

the imageFile until a match is found

127 and then pauses for the specified time in addedDelay.

128 Returns a box with the position of the match in screen coordinates.

129

130 This function can loop forever if a match is never found.

131 """

132

133 while not (location := findImage(imageFile)):

134 logging.info("Waiting for image %s. Pausing for 1 second and

rechecking ...", os.path.basename(imageFile))

135 pause ()

136 pause(addedDelay)

137 return location

138

139 def waitForImageAndClick(imageFile , delayBeforeClicking=0):

140 """ Continously scans the screen every second to find a section equal to

the imageFile until a match is found

141 and then clicks the center of the section after the specified

delayBeforeClicking.

142

47



143 This function can loop forever if a match is never found.

144 """

145

146 while not findAndClick(imageFile , delayBeforeClicking):

147 logging.info("Waiting for image %s. Pausing for 1 second and

rechecking ...", os.path.basename(imageFile))

148 pause ()

149

150 def openBitWardenFailSafe(maxRetries = 5):

151 """ This functions opens the main BitWarden extension window , even if the

extension window gets closed by some interruption (new tab opened ,

etc ...).

152 The function retries up to maxRetries to open the BitWarden extension and

if it fails , it clicks on the extension button again and retries

until

153 BitWarden is open.

154

155 Necessary because BitWarden opens a new tab to congratulate us for

installing it and depending on the timing can cancel the extension

window ,

156 so this approach is easier and more consistent.

157 """

158

159 waitForImageAndClick(EXTENSIONS_BUTTON)

160

161 currRetries = 0

162 found_bitwarden = None

163

164 while currRetries < maxRetries:

165 found_bitwarden = findImage(BITWARDEN_BUTTON)

166

167 if found_bitwarden:

168 pyautogui.click(found_bitwarden.left , found_bitwarden.top)

169 return

170

171 currRetries += 1

172 logging.info("Retrying for image %s (%d out of %d).", os.path.

basename(BITWARDEN_BUTTON), currRetries , maxRetries)

48



173 pause ()

174 else:

175 openBitWardenFailSafe ()

176 return

177 #endregion

178

179 def setEnvironmentURL(googleChromeCmd):

180 """ This function will properly set BitWarden 's environment URL to point

to the local BitWarden server. Opens Chrome with the given

googleChromeCmd.

181

182 This function closes Chrome at the end. Why? Because if we do not close

Chrome after setting the env URL , there will be 4-5 different

processes with

183 the BitWarden tag sleeping and closing Chrome fixes that issue. We only

want 1 BitWarden process so we know which one to memdump. As to why

this happens?

184 No clue really :(

185 """

186

187 logging.info("Environment URL setup: Start")

188

189 # Open chrome with the defined command

190 pyautogui.hotkey('alt', 'f2')

191 waitForImage(COMMAND_PROMPT , 1)

192 #For reference:

193 pyautogui.write(googleChromeCmd)

194 pause(1)

195 pyautogui.press('enter ')

196

197 openBitWardenFailSafe ()

198

199 #Click the settings button before the log -in

200 waitForImageAndClick(BITWARDEN_ENV_SETTINGS)

201

202 #Write localhost as the server URL

203 pyautogui.press('tab', 3, 0.15)

204 pyautogui.write("localhost")

49



205 pyautogui.press('enter ')

206

207 #Close chrome to start the testing

208 pause(2)

209 pyautogui.hotkey('alt', 'f4')

210 logging.info("Environment URL setup: Finished")

211

212 def performTest(googleChromeCmd , nthTest , memDumpDirectory , extensionName):

213 """ This function performs an entire test.

214 googleChromeCmd: the command to open up Google Chrome

215 nthTest: the number of the current test

216 memDumpDirectory: where should the memory dumps be stored

217 extensionName: the current extension name being tested

218 """

219

220 logging.info("Starting test %d.", nthTest)

221

222 # Open chrome with the defined command

223 pyautogui.hotkey('alt', 'f2')

224 waitForImage(COMMAND_PROMPT , 1)

225 #For reference:

226 pyautogui.write(googleChromeCmd)

227 pause(1)

228 pyautogui.press('enter ')

229

230 #Click the extension button and then BitWarden

231 openBitWardenFailSafe ()

232

233 # Select and click Login

234 waitForImageAndClick(LOGIN_BUTTON)

235

236 # Get PID of Bitwarden browser extension

237 chrome_extensions = [proc for proc in psutil.process_iter () if proc.name

() == 'chrome ' and ('--extension -process ' in proc.cmdline ())]

238 if len(chrome_extensions) != 1:

239 print(chrome_extensions)

240 sys.exit("ERROR: Could not get PID of Bitwarden Chrome extension")

241

50



242 pid = chrome_extensions[0].pid

243 logging.info('PID of Bitwarden Chrome extension: %d', pid)

244

245 #E-mail

246 email_text = waitForImage(E_MAIL_TEXT)

247 pyautogui.click(email_text.left , email_text.top + 10)

248 pyautogui.hotkey('ctrl', 'a')

249

250 #Type the e-mail address and replace the old one if there was

251 pause ()

252 pyautogui.write(configFile['username '])

253 pyautogui.press('tab')

254

255 #Perform first memory dump (control mem dump)

256 memdump(pid , nthTest , MEMDUMP_BEFORE_TYPING , memDumpDirectory ,

extensionName)

257 pause(1)

258

259 #Password details

260 secret_password = configFile['password ']

261 firstpart , secondpart = secret_password [:len(secret_password)//2],

secret_password[len(secret_password)//2:]

262

263 #Write half the password first , mem -dump after

264 pyautogui.write(firstpart , interval=0.15)

265 memdump(pid , nthTest , MEMDUMP_MID_TYPING_MP , memDumpDirectory ,

extensionName)

266

267 #Write the second half of the MP , mem -dump

268 pyautogui.write(secondpart , interval=0.15)

269 memdump(pid , nthTest , MEMDUMP_FINISH_TYPING_MP , memDumpDirectory ,

extensionName)

270

271 #Perform login

272 #NOTE: Just press enter to submit the form. This makes it universal for

all scripts since the child component one does not follow the same

tab order

273 pyautogui.press('enter ')

51



274

275 #Perform memdump after the vault opens (Check when the options button is

up)

276 waitForImage(OPTIONS_BUTTON)

277 memdump(pid , nthTest , MEMDUMP_ON_UNLOCK , memDumpDirectory , extensionName)

278 pause ()

279

280 #Simulate task

281 #https :// player.vimeo.com/video /604015327

282 pyautogui.hotkey('ctrl', 't')

283 waitForImage(GOOGLE)

284 pyautogui.write('https :// player.vimeo.com/video /604015327 ')

285 pyautogui.press('enter ')

286 waitForImageAndClick(PLAY_BUTTON , 1)

287 logging.info('Playing video for %d seconds.', TASK_TIME)

288

289 pause(TASK_TIME)

290

291 logging.info('Simulation of task ended.')

292 memdump(pid , nthTest , MEMDUMP_ON_TASK_FINISHED , memDumpDirectory ,

extensionName)

293

294 # Locate and click the extensions icon

295 waitForImageAndClick(EXTENSIONS_BUTTON)

296

297 #Click the (now blue because we're logged in) BitWarden Button

298 waitForImageAndClick(BITWARDEN_BLUE_BUTTON)

299

300 #Click the settings button

301 #NOTE: It's better to keep the locate button since there could be

multiple entries in the password vault

302 waitForImageAndClick(OPTIONS_BUTTON)

303 #Terminate session button

304 pause(3)

305 pyautogui.press('tab', presses=14, interval=0.15)

306 pyautogui.press('enter ')

307

308 #And terminate session

52



309 waitForImageAndClick(YES_BUTTON)

310

311 #Mem -dump after exiting the session

312 memdump(pid , nthTest , MEMDUMP_SESSION_TERMINATED , memDumpDirectory ,

extensionName)

313

314 # Close chrome

315 pause(2)

316 pyautogui.hotkey('alt', 'f4')

317

318 if (len(sys.argv)) == 1:

319 sys.exit("ERROR: Please run the script with at least 1 extension .\

nExample: python3 /home/vagrant/passcert/memdump -tests/runLinux.py /

home/vagrant/passcert/bw-browser -v1.55/ build/")

320

321 #Set up the logger

322 logging.basicConfig(format='%( levelname)s:%( message)s', level=logging.INFO)

323

324 # Obtain monitor size

325 monitor_size = pyautogui.size()

326

327 #Config file

328 configFile = configparser.ConfigParser ()

329

330 configFile.read('/home/vagrant/passcert/memdump -tests/config.ini')

331

332 configFile = configFile['DEFAULT ']

333

334 if not configFile['username '] or not configFile['password ']:

335 sys.exit("ERROR: Please follow the instructions in the sampleconfig.ini

before starting the tests")

336

337 #Set up the directory for the memory dumps

338 memDumpDirectory = os.getcwd ()

339 if not configFile['memoryDumpDirectory ']:

340 logging.info('No directory set up for the memory dumps , using the current

working directory instead: %s.', memDumpDirectory)

341 else:

53



342 memDumpDirectory = configFile['memoryDumpDirectory ']

343 logging.info('Memory dump directory set to: %s.', memDumpDirectory)

344

345 numberOfTests = configFile.getint('numberOfTests ', 0)

346

347 logging.info("Perfoming %d tests.", numberOfTests)

348

349 extension_list = []

350

351 for i in range(1, len(sys.argv)):

352 extension_list.append(sys.argv[i])

353

354 extension_names = []

355 for dir in extension_list:

356 extension_names.append(getExtensionName(os.path.normpath(dir)))

357

358 for i in range(len(extension_list)):

359 # Define the chrome command

360 size_opts = f"--window -position =0,0 --window -size={int(monitor_size.width

)},{ monitor_size.height}"

361 other_opts = "--password -store=basic"

362 ext_opts = "--load -extension=" + extension_list[i]

363 flag_opts = "--allow -insecure -localhost"

364 cmd = f"google -chrome {flag_opts} {size_opts} {other_opts} {ext_opts}"

365

366 #Run tests

367 for j in range(numberOfTests):

368

369 #NOTE: Reset Chrome settings to avoid a) loading with more than 1

extension and b) Chrome might randomly disable the extension

because it deems it "unsafe"

370 #Also give it some time because chrome might still be writing stuff

in the folder (https :// unix.stackexchange.com/questions /506319/

why -am-i-getting -directory -not -empty -with -rm-rf)

371 pause(2)

372 os.system("sudo rm -rf /home/vagrant /. config/google -chrome; sudo

mkdir -p /home/vagrant /. config/google -chrome; sudo cp -rf /

vagrant/data/google -chrome /* /home/vagrant /. config/google -chrome;

54



sudo chown -R vagrant.vagrant /home/vagrant /. config/google -

chrome")

373 pause(2)

374

375 setEnvironmentURL(cmd)

376

377 performTest(cmd , j, memDumpDirectory , extension_names[i])

378 logging.info("Percentage of tests completed for extension %s: %f%%.",

extension_names[i], (j + 1) / numberOfTests * 100)

379

380 # Print final message

381 logging.info("ALL TESTS DONE.")

55



56



B
Results of our extensions

In this appendix we present the raw results of the memory dump analysis for our extensions.

57



0 10 20 30 40
Number of master password occurences in the child component extension

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Te
st

 st
ep

0

4.0125

28.6125

6.6375

0

0

0

10.15

45.1

4.0625

3.3125

1.675

0

0

4

1.65

1

1

0

0

8.875

7.55

1.275

0.25

Partial MP UTF-8
Partial MP UTF-16
Full MP UTF-8
Full MP UTF-16

Figure B.1: Number of partial and full master password occurrences in memory in the child component extension
by test step

58



0 10 20 30 40
Number of master password occurences in the child component inlined extension

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Te
st

 st
ep

0

3.91346

29.1058

7.11538

0

0

0

10.7885

45.1923

3.59615

2.75962

1.21154

0

0

3.99038

1.73077

1

1

0

0

9.02885

5.97115

1.38462

0.519231

Partial MP UTF-8
Partial MP UTF-16
Full MP UTF-8
Full MP UTF-16

Figure B.2: Number of partial and full master password occurrences in memory in the child component inlined
extension by test step

59



0 10 20 30 40
Number of master password occurences in the no child component extension

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Te
st

 st
ep

0

4

30

9.80198

0

0

0

10.901

46.2178

8.52475

6.79208

3.74257

0

0

4

1.9802

1

1

0

0

8.9802

9.77228

2.89109

0.633663

Partial MP UTF-8
Partial MP UTF-16
Full MP UTF-8
Full MP UTF-16

Figure B.3: Number of partial and full master password occurrences in memory in the no child component extension
by test step

60



0 10 20 30 40
Number of master password occurences in the no child component inlined extension

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Te
st

 st
ep

0

3.90217

28.5109

6.63043

0

0

0

10.6739

44.5543

5.47826

3.65217

1.96739

0

0

3.78261

1.66304

1

1

0

0

8.6087

7.29348

1.57609

0.684783

Partial MP UTF-8
Partial MP UTF-16
Full MP UTF-8
Full MP UTF-16

Figure B.4: Number of partial and full master password occurrences in memory in the no child component inlined
extension by test step

61



62


	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Acronyms

	1 Introduction
	1.1 Introduction
	1.2 Organization of the Document

	2 Background work
	2.1 Password Managers
	2.1.1 What are they?
	2.1.2 How are passwords stored
	2.1.3 What is stored on the password vault?
	2.1.4 How are password vaults encrypted?

	2.2 Desired Data Security Properties of a Password Manager
	2.2.1 Locked (pre-login)
	2.2.2 Unlocked (and running)
	2.2.3 Locked (and running)

	2.3 BitWarden
	2.3.1 BitWarden's Login Authentication

	2.4 Security issues of keeping secrets in memory for longer than necessary
	2.5 Layers of abstraction
	2.6 Password retention risks
	2.6.1 Application sent to background
	2.6.2 Crash dumps
	2.6.3 Delayed garbage collection
	2.6.4 Different layers of abstraction and lack of secure API
	2.6.5 Function Arguments Copies


	3 Password retention on the BitWarden extension
	3.1 Threat model
	3.2 Memory Dump Analysis
	3.2.1 Test steps

	3.3 Results and observations
	3.3.1 Observation #1: Prefixes of the Master Password in Memory
	3.3.2 Observation #2: Prefixes stay longer in memory if the input is left untouched
	3.3.3 Observation #3: Unlocking the vault does not clear the master password

	3.4 List of problems
	3.4.1 Problem #1: Use of immutable data types to hold the master password
	3.4.2 Problem #2: No zeroization of the master password
	3.4.3 Problem #3: Use of String to communicate master password from interface to component


	4 Our solution
	4.1 Common changes between all versions
	4.2 Implementation with a login child component - Child component
	4.2.1 MasterPasswordCustomInputComponent

	4.3 Implementation with a login child component - inlined
	4.4 Implementation without a login child component
	4.5 Implementation without a login child component - inlined

	5 Evaluation
	5.1 Preparing the testing environment
	5.2 Automatic testing using Python and PyAutoGUI
	5.3 Analysing the created memory dumps
	5.4 Results
	5.4.1 Full master password
	5.4.2 Partial master password
	5.4.3 Child component and no child component


	6 Conclusion
	6.1 Conclusion
	6.2 Future work

	Bibliography
	Appendix A

	A Code of Project
	Appendix B

	B Results of our extensions

